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Introduction .

This report summarizes our research efforts in the area of Reasoning with Incomplete
and Uncenain Information.

This report consists of ten chapters, which have been, in part or full, previously
published as papers in technical meetings, a Jd professional journals. These papers de-
scribe the current theoretical and technological advances that will culmirate with the
development and application of PRIMO (Plausible Reasonlng MOdule), a software tool
implemented in Common Lisp and Flavors at GE.

PRIMO is a resoning system that integrates the theories of plausible and default
reasoning. It consists of a language for representing uncertain and defauit knowledge,
along with algorithms for reasonming in this language.

PRIMO handles uncertain information by qualifying each possible value assignment to
any given variable with an uncertainty interval. The interval’s lower bound represents the
minimal degree of confirmation for the value assignment. The upper bound represents the
degree to which the evidence failed to refute the value assignment. The interval’s length
represents the amount of ignorance attached to the value assignment. The uncertainty
intervals are propagated and aggregated by Triangular norm based uncenainty calculi.

PRIMO handles incomplete information by evaluating non-monotonic justified (NMJ)
rules. These rules express the knowledge ~negineer’s preference or bias to be used by the
reasoning system in cases of total or partial ignorance regarding the value assignment
of a given variable. The NMJ rules are used when there is no plausible evidence (10 a
given numerical standard of belief or cerntainty) to infer tha. a given value assignment is
either true or false. i1he conclusions of NMJ rules can be retracted by the belief mvision
system, when enough plausible evidence is available.

For efficiency considerations restrictions are placed on the types of rules allowed
in PRIMO. The monotonic rules are non-cyclic Hom clauses, and are maintained by
a linear belief revision algorithm operating on a rule graph. The NMJ rules can have
cycles, but cannot have disjunctions in their conclusions. By identifying sets of NMJ
rules as strongly connected components (SCC's), we can decompose the rule graph into
a directed acyclic graph (DAG) of nodes, some of which are SCCs with several input
edges and output edges. PRIMO contains algorithms to efficiently propagate uncertain
and incomplete information through the above structures at run time. These algorithms
require finding satisfying assignments for nodes in each SCC, and arc thus NP hard in




the unrestricted case. By restricting tne size and complexity of the SCC's, precomputing
their structural information, and using run-time evaluated certainty measures to break the
symmetry of multiple fixed ponts, we can achieve tractability in the average case. The
semantcs and algorithms used in PRIMO are described in more detail in chapter 6.

The papers taken as a 7rrup represent the progress of our work over the past 18
months. They are in some se:w . prototypical of the evolution of PRIMO. We now give
a thorough summary of the papers collected in this report.

The first paper, “A Study on Uncertainty Maragement” is a report on the state of the
art of reasoning with uncertainty. This study analyzes the vanous sources of uncertainty,
the state of the art of reasoning theories and technologies capable of dealing with un-
centainty, their applical. ... *~ - dvanced Crew Station Programs, such as the Submarine
Operational Auto.aation Sysicin (SOAS) program, and their computational cost.

The second paper, “T-norm Based Reasoning in Situation Assessment Applications,”
is a report on the use of RUM to perform Situation Assessment (SA). The paper consists
of a summary of RUM and T-norm based reasoning, a sequence of experiments, and a
description of the test-bed environment for developing these experiments. The sequence
of expeniments in both naval and acnial SA consisted of correlating reports and tracks, lo-
cating and classifying platforms, and identifying intents and threats. The paper illustrates
an example of naval SA. The test-bed environment has been provided for by LOTTA, a
symbolic simulator implemented in Flavors. This simulator maintains time-varying situ-
ations in a multi-player antagonistic game where players must make decisions in light of
uncenain and incomplete data. RUM has been used to assist one of the LOTTA players
to perform the SA task.

While the second paper deals mainly with RUM and T-norm based reasoning, the third
paper, “Plausible Reasoning in Dynamic Classification Problems,” deals mainly with the
test-bed archiiecturc and a methodology for testing and validating the knowledge base and
inference techniques used for dynamic classification problems. The test-bed architecture
is compesed of two parts: a simulation environment, LOTTA, and a reasoning system,
RUM.

The simulation environment is composed of four basic modules: the window sub-
system, a window based user interface for displaying time varying features; LOTTA, the
simulator; and a set of tools for interfacing to a reasoning system. LOTTA has no rea-
soning capabilities; these are provided by extermnal reasoning modules, easily interfaced
to the LOTTA data structures.

RUM and RUMrunner, RUM’s run-time counterpart, are the reasoning systems used
in the test-bed architccture. RUM’s main function is to build ruke-based reasoning sys-
tems following the rapid pruictyping methodology. Following the testing, and verification
of the application using RUM, the knowledge base is then automatically translated aind
compiled into compact data structures. RUMrunner reasons opportunistically with these
data structures to achieve run-time performance required by most real-time applications.

The paper also reports on the use of this architecture in both naval and aerial SA
problems. The architzcture described in this paper has also been used for the testing, and




development of applications using PRIMO.

In earlier reports we presented a semantical account of nonmonotonic reasoning based
on the partial ordering of interpretations of standard logics. The fourth paper, “New
Results on Semantical Nonmonotonic Reasoning,” generalizes and extends the earlier
work. The paper elucidates the structural relation between the new work and the old.
Also, in the paper the new results are applied to give a logical account of justification
based truth maintenance. -

The fifth paper, “Logics of Justified Belief,” gives a formal semantics to truth main-
tenance by offering a mathematical logic - equipped with an underlying model theory -
that is used to characterize quite precisely some well known models of truth maintenance.
In addition to giving meaning to truth maintenance in terms of a formal logic, the paper
shows that each characterising logic corresponds to a particular truth maintenance system
and vice versa.

The sixth paper, “Uncentainty and Incompleteness: Breaking the Symmetry of De-
feasible Reasoning,” addresses two major difficulties in default logics, namely their in-
tractability and the problem of selecting among multiple extensions. This paper proposes
an apporoach to these problems based on integrating nonmonotonic reasoning with plau-
sible reasoning based on triangular norms. The paper shows how RUM, which performs
uncertain monotonic inferences on an acyclic graph, has been extended to allow non-
monotonic inferences and cycles within nonmonotonic rules. By restricting the size and
complexiry of the nonmonotonic cycles it can still perform efficient inferences. The
uncertainty measures in RUM provide a basis for dcciding between multiple defaults.
Different algorithms and heuristics for finding the optimal defaults are discussed.

The seventh paper, “The Complexity of Hom Theories with Normal Unary Defaults”,
proves that although fast algorithms exist for determining whether a literal holds in a
propositional default theory in which the propositional theory consists solely of literals
and the default rules are Horn, and exist for deciding satisfiability of propositional Hom
theories, the two cannot be combined without introducing intractability. In particular,
we show that when the propositional theory of a default theory allows Hom clauses,
the membership problem becomes intractable even when the default rules in the theory
are restricted to being propositional normal unary default rules, a strong restriction of
propositional Horn default rules. The paper also presents several related results, showing
that the entailment problem, the enumeration problem, and the problem of determining
whether there exists an extension that “satisfies” some specified number of the default
rules are all intractable for these restricted default theories.

The eighth paper “It's Not My Default: The Complexity of Membership Problems
in Restricted Propositional Default Logics,” introduces a hierarchy of classes of proposi-
tional default rules, and charactenizes the complexity of typical problems in those classes
under various assumptions about the underlying propositional theory.

The ninth paper, “PRIMO: A Tool for Reasoning with Incomplete and Uncentain In-
formation” reviews the theoreti~al foundaticns of PRIMO and discussecs PRIMO's design
and implementation.




The final paper, “PRIMO: User’s Guide,” brings together the work previously dis-
cussed. The paper describes the final implementation of PRIMO and the steps involved
in developing an application.




1. A Study on Uncertainty Management

Piero P. Bonissone
General Electric Corporate Research and Development
Schenectady, New York 12301

1.1 Introduction

Uncertainty is a pervasive phenomenon throughout many environments. Consider, for
example, the submarine environment. Organic and non-organic sensor inputs provide
imprecise and, occasionally, unreliable or inaccurate data. The fusion of mult-sensor
tracks into a consolidated contact track is marred with ambiguity caused by tracks crossing
or by lost-and-recovered tracks. The knowledge used to define and interpret a given
situation (scene) is often incomplete and imprecise, since it is usually based on subjective
evaluations of similar situations. For a given situation, the matching of a tactical plan
developed for some similar contingent situations is also an approximate process. Once a
plan is selected, uncertainty is still present in the plan adaptation, projection and repair
phases. Finally, during plan execution, we cannot deterministically predict the results of
the performed actions.

This study analyzes the various sources of uncertainty, the state of the art of rea-
soning theories and technologies capable of dealing with uncertainty, their applicability
to a domain of problems referred to as the dynamic classification problem, and their
computational cost.

1.1.1 Uncertainty Sources

In a survey of reasoning with uncertainty [BT85], it is noted that there are two major
types of uncertainty: randomness and fuzziness. Randomness deals with the uncertainty
of whether a given element belongs or does not belong to a well-defined set (event).
Fuzziness deals with the uncertainty derived from the partial membership of a given
element to a set whose boundaries are not sharply defined.

These two types of uncertainty can be introduced in reasoning systems is caused by
a variety of sources: the reliability of the information, the inherent imprecision of the
representation language in which the information is conveyed, the incompleteness of the
inforration, and the aggregation or summarization of information from multiple sources.

The first source type is related to the reliability of information: uncertainty can be
present in the factual knowledge (i.e., the set of assertions or facts) due to inaccuracy and
poor reliability of the instruments used to make the observations. Uncertainty can also



occur in the knowledge base (i.e., the rule set) as a result of using weak implications.
Unlike categorical rules (describing set subsumption relationships) weak implications or
plausible rules are typically used to describe likely interpretations of situations. By their
very nature, these rules are less reliable than categorical rules and are used when the
expert or model builder is unable to establish an exact correlation between premise and
conclusion. In most expert systems the degree of implication is artificially expressed as a
scalar value on an interval (certainty factor, conditional probability, degree of sufficiency,
etc.). This value represents the change from the strict implication for all x, A(z) — B(z),
to the weaker statement for most x, or usually, for all x, A(z) — B(z). The latter statement
is not categorical and allows the possibility of exceptions to the rule. Thus the logical
implication has now been changed into a plausible implication or disposition [Zad85b],
[Zad88]. A natural way to express such a degree of implication is achieved by using
fuzzy quantifiers such as most, almost all, etc. {Zad83a), {Zad84a]. !

Uncertainty in the data can be compounded by aggregating uncertain data in the
premise, by propagating certainty measures to the conclusion, and by consolidating the
final certainty measure of conclusions derived from different rules. Triangular norms and
conoms [6], [DP84] can be used to generalize the conjunction and disjunction operators
that provide the required aggregation capabilities. A description of their characteristics
is provided in reference [1].

The second type of uncertainty is caused by the inherent imprecision of the facts and
rules representation language. Observations can contain ill-defined concepts. Rules can
contain vague predicates describing tests which cannot be expressed by boolean expres-
sions (e.g., a great change in heading). As a result, these rules cannot be interpreted
exactly. This problem has been partially addressed by the possibilistic theory of approx-
imate reasoning that, in light of imprecise fact and rule descriptions, allows one to make
weaker inferences based on a generalized modus ponens {Zad75].

The third type of uncertainty is caused by the incompleteness of the information. This
type of uncertainty has generally been modeled by non-numerical characterizations, such
as Doyle’s Reasoned Assumptions [Doy83].

The fourth type of uncertainty arises from the aggregation of information from differ-
ent knowledge sources or experts. When unconditional statements (facts) are aggregated,
three potential problems can occur: the closure of the representation may no longer be
preserved when the facts to be aggregatcd have different granularity (the single-valued
certainty measures of the facts may change into an interval-valued certainty measure of the
aggregated fact); the aggregation of conflicting statements may generate a contradiction
that should be detected; the rule of evidence combination may create an over-estimated
centainty measure of the aggregated fact, if a normalization is used to eliminate or hide a
contradiction {Zad84b], [Zad85a]. The first two problems are typical of single-valued nu-
merical approaches, while the last problem is found in the two-valued approach proposed
by Dempster [Dem67].

'A fuzzy quantifier is a fuzzy number representing the relative cardinality of the subset of elements in
the universe of discourse that usually satisfy the given property, i.e., the implication.




1.1.2 Focus and Structure of This Study

We have observed that there are different types and sources of uncentainty, and, corre-
spondingly, there are different approaches for handling it. Each approach has its own
underlying assumptions and semantics, as each approach captures different aspects of the
uncertainty.

In this study will focus on the analysis of the trade-off betw..i the adequacy of an
approach and its computational cost. This analysis is motivated by the desire to meet two
important requirements: the scalability of the Knowledge Base and the functional exten-
sibility of the supporting architecture. To meet these requirements we will analyze the
computational complexity, the input information requirements, the underlying assump-
tions and associated problem decomposition techniques needed to provide modularity,
and the available approximations of each major approach.

In the next section (Section 1.2) we will review the state of the art of techniques for
reasoning with uncertainty. We will emphasize the numerical approaches and contrast
and compare probabilistic and possibilistic methods. These methods will be described in
Section 1.3 and 1.4,

Section 1.5 will cover a subset of reasoning technologies embodying possibilistic
theories. These theories and technologies are evaluated and compared against a list of
requirements in Section 1.6.

In section 1.7, we describe some of the most relevant tasks in situation assessment
and tactical planning. Finally, in Section 1.8, we discuss the applicability of uncertainty
management techniques to these tasks.

1.2 State of the Art of Reasoning with Uncertainty

The existing approaches to representing uncertainty can be subdivided into two basic
categories according to their quantitative or qualitative characterizations of uncertainty.
(See references (2], [Pea88] for a survey). Among the quantitative approaches, we find
two types of reasoning that differ in the semantics of their numerical representation. One
is the probabilistic reasoning approach, based on probability theory. The other one is the
possibilistic reasoning approach, based on the semantics of many-valued logics.

Some of the more traditional techniques found among the approaches derived from
probability are based on single-valued representations. These techniques include Bayes
Rule [Pea82, Pea8S, Pea88], Modified Bayes Rule [DHN76] and Confirmation The-
ory (SB75]. A more recent trend among the probabilistic approaches is represented by
approaches based on interval-valued representations such as Dempster-Shafer Theory
[Dem67, Sha76], Evidential Reasoning [LGS86], and Probability Bounds, i.e., consis-
tency and plausibility (see [Qui83]).

Over the last five years, considerable efforts have been devoted to improve the com-
putational efficiency of Bayesian Belief Networks (BBN) for trees and small polytrees
[Pea88al, and for directed acyclic graphs (influence diagrams) (HM84, Sch86, ARS87).




Problem decomposition techniques (e.g. loopcuts, cliques) [LD88] and approximate meth-
ods (e.g. conditioning, clustering, bounding interval, simulations) [Hen87) have been
derived to handle multi-connected Bayesian Belief Networks [Pea88a].

Among the approaches anchored on many-valued logics, the most notable are based
on a fuzzy-valued representation of uncertainty. These include Necessity and Possibility
Theory {Zad78, Zad79a), the Linguistic Variable Approach [Zad79b, Zad83b], and the
Triangular-norm based approach (3, 1, 5, Bon89].

With numerical representations, it is possible to define a calculus that provides a
mechanism for propagating uncertainty through the reasoning process. Similarly, the
use of aggregation operators provides summaries which can then be ranked to perform
rational decisions.

Models based on qualitative approaches, on the other hand, are usually designed
to handle the aspect of uncertainty derived from the incompleteness of the information,
such as Reasoned Assumptions [Doy83], and Default Reascning [Rei80]. With a few
exceptions, they are generally inadequate to handle the case of imprecise information,
as they lack any measure to quantify confidence levels [Doy83]. A few approaches
in this group have addressed the representation of uncertainty, using either a formal
representation, such as Knowledge and Belief [YM86], or a heuristic representation,
such as the Theory of Endorsements [Coh85, CG83].

The formal approach has a corresponding (modal) logic theory that determines the
mechanism by which inferences (theorems) can be proven or believed to be true. The
heuristic approach has a set of context-dependent rules to define the way by which frame-
like structures (endorsements) can be combined, added or removed.

We will now focus our discussion on the two types of quantitative representations of
uncertainty and we will contrast probabilistic and possibilistic reasoning systems.

1.2.1 Approximate Reasoning Systems

The task of a reasoning system is to determine the truth value of statements describing
the state or the behavior of a real world system. However, this hypothesis evaluation
requires complete and certain information, which is typically not available. Therefore,
approximate reasoning techniques are used to determine a set of possible worlds that are
logically consistent with the available information. These possible worlds are character-
ized by a set of propositional vanables and their associated values. As it is generally
impractical to describe these possible worlds 1o an acceptable level of detail, approximate
reasoning techniques seek to determine some properties of the set of possible solutions
or some constraints on the values of such propertdes [Rus87], {Rus89], (Rus90b].

A large number of approximate reasoning techniques have been developed over the
past decade to provide these solutions. (See references [2], [Pea88] for a survey). These
techniques have been roughly subdivided into two basic categories according to their
quantitative or qualitative characterizations of uncerntainty. Among the quantitative ap-
proaches, we find two types of reasoning that differ in the semantics of their numerical
representation. One is the probabilistic reasoning approach, based on probability theory.
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The other one is the possibilistic reasoning approach, based on the semantics of many-
valued logics. We will briefly contrast these two types of quantitative representations and
focus our discussion on possibilistic reasoning systems.

1.2.2 Probabilist'c and Possibilistic Reasoning Systems
Probabilistic Reasoning Systems

Probability-based reasoning, or probabilistic reasoning secks to describe the constraints
on the variables that characterize the possible worlds with conditional probability distri-
butions based on the evidence in hand. Their supporting formalisms are based on the
concept of set-measures, additive real functions defined over centain subsets of some
space.

These methods focus on chance of occurrence and relative likelihood. They are
orienied primaiiiy toward the choice of decisions that are optimal in the long-run, as
they measure the tendency or propensity of truth of a proposition without assuring its
actual vatidity. Thus, probabilistic reasoning estimates the frequency of the truth of a
hypothesis as determined by prior observation (objectivist interpretation) or a degree of
gamble based on the actual truth of the hypothesis (subjectivist interpretation).

Probabilistic methods seldom make categorical assertions about the actual state of
the system being investigated. Rather, they indicate that there is an experimentally-
determined (or believed) tendency or propensity for the system to be in some specified
state.

The typical standard of measurement of probabilistic decision-making is, correspond-
ingly, a measure of average decision utility that is meaningful only when the method-
ology is to be applied in a large number of situations. Probabilistic methods have a
well-developed set of decision-theoretic approaches based primarily on the concept of
expected utlity [LR57]. Experience obtained through psychological experimentation
[KST82] suggests, on the other hand, that human beings often misunderstand and mis-
apply probabilistic information, thus reducing its potential value.

From a practical computational viewpoint, probabilistic methods suffer from problems
associated with the reliable determination of all required joint and conditional probabil-
ites. In complex systems, it is often the case that many variables interrelate with each
other in ways that are not expressible in terms of simpler interactions. In a military
assessment problem, for example, such quantities as “the probability of frontal attack
given this situation™ are not easily measured or elicited.

Possibilistic Reasoning Systems

Possibilistic reasoning, which is rooted in fuzzy set theory [Zad65] and many-valued
logics, seeks to describe the constraints on the possible worlds in terms of their similarity
to other sets of possible worlds.




These methods focus on single situations and cases. Rather than measuring the
tendency of the given proposition to be valid, they seek to find another proposition that
is valid. This proposition is usually less specific and resembles (according to some
measure of similarity) the original hypothesis of interest.

Given the purpose and characteristics of probabilistic and possibilistic reasoning, it
is clear that these technologies ought to be regarded as being complementary rather than
competitive. -

The single-case orientation of possibilistic techniques makes them particularly suitable
for case-based reasoning. In CBR, it is typically the case that the problem in hand (probe)
has never been encountered before. The inference in CBR is based on the existence
of cases similar enough (i.e. close enough) to the probe to justify the adaptability of
their solution to the current problem. The possibilistic techniques are also very suitable
to represent the subjective degrees of belief inherent in the knowledge bases used to
interpret and understand tactical situations. Typically these situations have never been
encountered before, but the problem domain experts can describe and interpret similar,
more generic, prototypical situations.

The notion of similarity is based on the concept of metric or distance, as opposed to
that of set measure. Distances are functions which assign a number greater that zero to
pairs of elements of some set (for sake of simplicity, we will assume the range of this
function to be the interval [0,1]). Distances are reflexive, commutative, and transitive.
Similarity can be defined as the complement of distance, i.e.:

S(A,B)=1-4d(A, B)

The basic structural characteristics of the similarity functions is an extended notion of
transitivity that allows the computation of bounds on the similarity between two objects
A and B on the basis of knowledge of their similarities to a third object C:

S5(A,B) > T(S(A,0),S(B,C)),

where T is a Triangular-norm (1], {3]. Any continuous triangular norm 7'(A, B) falls
in the interval Maz(0,A+ B - 1) < T(A, B) < Min(A, B). Thus, we can observe that
the if we use the lower bound of the range of T-norms in the expression describing the
transitivity of similarity, we obtain the triangular inequality for distances. If we use the
upper bound, we obtain the ultrametric inequality.

This similarity notion is a direct extension of the notion of accessibility relation
that is of fundamental importance in modal logics. This notion is further described by
Ruspini in reference [Rus90aj. In summarizing Ruspini’s results, we can observe that
the notion of accessibility captures the idea that whatever is true in some world w, is
true, but in a modified sense, in another w’ that is accessible from it. When considering
multiple levels of accessibility (indexed by a number between 0 and 1), this relation,
measuring the resemblance between two worlds, may be used to express the extent by
which considerations applicable in one world may be extended to another world.
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The basic inferential mechanism, underlying the generalized modus-ponens {Zad79b],
makes use of inferential chains and the properties of a similarity function to relate the
state of affairs in the two worlds that are at the extremes of an inferential chain.

1.3 Probabilistic Reasoning: Theories and Approaches

Having contrasted the difference between probabilistic and possibilistic reasoning tech-
niques, we will now examine selected representative approaches. Among the probabilis-
tic techniques we will analyze the Bayesian approaches (Bayesian, Modified Bayesian,
Bayesian Belief Networks), Confirmation Theory (certainty factors) and Dempster-Shafer
(Belief Theory).

1.3.1 Bayes Rule

Given a set of hypotheses H = {hy,h2,...,h,} and a sequence of pieces of evidence
{e1,€2,...,en}, Bayes rule, derived from the formula of conditional probability, states
that the posterior probability P(h; | e1,e2,...,e,) can be derived as a function of the
conditional probabilities P(e1,ez,....em | h;) and the prior prohatility F(h;):

P(€1,€2,...,€m ' ht) : P(ht)
Y1 Pler,€e2,...,em | hi)- P(hy)

The Bayesian approach is based on two fundamental assumptions:

P(h; ! Ci1€2y.--16m) =

(1.1)

¢ Each hypothesis h; is mutually exclusive with any other hypothesis in the set H
and the set of hypotheses H is exhaustive, i.e.:

P(hi,h;) = 0 fori¥j; (1.2)
S Ph) = 1 (1.3)
=1

e Each piece of evidence e; is conditionally independent under each hypothesis, i.e.:

P(er,e2,-.. em | )= [] Ple; | hy) (1.4)

j=1

Note that assumptions 1.2 and 1.3 are required to derive Bayes Rule from the formula
of conditional probability. Assumption 1.4, on the other hand, is usually made to alleviate
the difficulty of determining the conditional joint probability required by equation 1.1.
Thus, under assumption 1.4, equation 1.1 becomes computationally feasible.

This method requires a large amount of data to determine the estimates for the prior
and conditional probabilities. Such a requirement becomes manageable when the problem
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can be represented as a sparse Bayesian network that is formed by a hierarchy of small
cluster of nodes. In this case the dependencies among varniables (nodes in the network)
are known and only the explicitly required conditional probabilities must be obtained
[Pea85].

1.3.2 Modified Bayes Rule

In addition to assumptions 1.2 and 1.3 (for derivational needs) and assumption 1.4 (for
operational convenience) needed by ihe onginal Bayes Rule, the Modified Bayesian
approach, used in PROSPECTOR, also requires that each piece of evidence e, be condi-
tionally independent under the negation of each hypothesis, i.e.:

P(er,ez,... .em | hi) = ] Ple; | ~hy) (1.5)
)=l
The Modified Bayesian approach is based on a vanation of the odds-likelihood formu-
lation of Bayes rule. When all the pieces of evidence are certainly true, this formulation
defines the posterior odds as:

P(ey | hi) P(ey | hy) P(en | hi) P(hy)

OChi | e1,€2,...,em) Pler | k3 Blea [ k) e A3 k)

= A)iA2s o An,iOChy) (1.6)
where:
Aji = g i the likelihood ratio of e for hypothesis ;.
] 1]

O(hy) = 7,’%%;?3 is the odds on hypothesis h;.
An analogous odds-likelihood formulation is derived for the case when all the pieces
of evidence are certainly false:

P(-e1 | hi)  P(-ez | hy) P(~en | hi)  P(hi)
P(-ey | ~h)) P(-ez| ~h,) " P(-en| —hi) P(=h;)
= AL A3 AL, - O(h) (1.7)

O(h, | —e1,~€2,...,7€m)

The likelihood ratio Aj,: measures the sufficiency of a piece of evidence e; to prove
hypothesis h,. Similarly, A} measures the necessity of such a piece of evidence to prove
the given hypothesis (12).

Formulae 1.6 and 1.7 assume that evidence e, is precise (i.e., P(e;) € {0,1}). This
is not the case in most expert system applications. Therefore, the above formulae must
be modified to accommodate uncertain evidence. This is accomplished by using a linear
interpolation formula. For the case of single evidence, the posterior probability P(h, | e;)
is computed as:

P(h,| €)= P(hi | e))- Ple; | e))+ P(h, | =e,) - P(=e, | €)) (1.8)
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where P(e; | e;-) is the user’s assessment of the probability that the evidence e; is

true, given the relevant observation e,. An effective likelihood ratio, X} ;, is calculated
from the posterior odds:

’ O h,’ 8’-
A i = _(__.I__l2 (19)

» O(h,)

The posterior odds for all the &vidence is then computed as:
i ! ! m ’

O(h; | ey, ez,...e,) = OCh) [T Aj (1.10)

=1
Equation 1.8, however, requires a modification, because it over-constrains the input
requested from the user. In fact, the user must specify:

O(h;). the prior odds on h, from which P(h;) can be derived

A, the measure of sufficiency from which P(k; | e,) can be derived

A%, the measure of necessity from which P(h; | —e;) can be derived

O(e;) the prior odds on e; from which P(e;) can be derived

These requirements are equivalent to specifying a line in the space [ P(e | e), P(h; | )]
by specifying three points:

0, P(h; | me;)), (Ple;), P(hy), (1, P(hi | €;))

The modification adopted in this approach to prevent the user’s inconsistencies is
to change equation 1.8 into a piece-wise linear function defined by two line segments
passing through the above three points [DHN76].

In an analysis of this approach, Pednault, Zucker, and Muresan [PZM81] concluded
that for the cases of more than two hypotheses, assumptions 1.4 and 1.5, requiring condi-
tional independence of the evidence both under the hypotheses and their negation, were
inconsistent with assumptions 1.2 and 1.3, requiring an exhaustive and mutually exclu-
sive space of hypotheses. Specifically, Pednault proved that, under these assumptions,
no probabilistic update could take place, i.e.:

P(e; | hy) = P(e, | -hy) = P(e;) Vi, j (1.11)

However, Glymour [Gly85] obtained a pathological counter-example to Pednault’s
statement (equation 1.11), finding a fault in the original proof of Hussain's theorem that
constituted the basis for Pednault’s results. Johnson [Joh86] extended this analysis by
first showing that there are also non-pathological counter-examples that refute Pednault’s
results. However, Jonhson proved that under the same assumptions used in Pednault’s
work, for every hypothesis h; there is ar most one piece of evidence e, that produces
updating for h;. Further studies done by Cheng and Kashyap [CK86] have also indicated
that there are at least max{0,(m — | 3 |)] pieces of evidence that are irrelevans to all the

2An evidence e, is said to be irrelevant to the hypothesis h, if P(h, | e,) = P(h,).
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hypotheses in the system. This lower bound is for a system satisfying assumptions (4)
and (5), in which n is the number of mutually exclusive exhaustive hypotheses (n > 2),
and m is the number of evidence. Their conclusion is that assumption 1.5 should be
dropped.

Pearl has argued in reference [Pea85] that assumption 1.5, requiring the conditional
independence of the evidence under the negation of the hypotheses, is over-restrictive.
By discarding this assumption, Pearl has derived new, more promising results. However,
the assumption 1.4, requiring the conditional independence of the evidence under the
hypotheses, is still required for computational efficiency.

The Bayesian approach has various shortcomings. The assumptions on which it
is based are not easily satisfiable, e.g. if the network contains multiple paths linking
a given evidence to the same hypothesis, the independence assumptions 1.4 and 1.5
are violated. Similarly, assumptions 1.2 and 1.3, requiring the mutually exclusiveness
and exhaustiveness of the hypotheses, are not very realistic: assumption 1.2 would not
hold if more than one hypothesis could occur simultaneously and is as restrictive as the
single-fault assumption of the simplest diagnosing systems; assumption 1.3 implies that
every possible hypothesis is a priori known, and it would be violated if the problem
domain were not suitable to a close-world assumption. Perhaps the most restrictive
limitaton of the Bayesian approach is its inability to represent ignorance (i.e., non-
commitment) as illustrated by its two-way betring interpretation [Gil82]. The two-way
betting interpretation of the Bayesian approach consists of regarding the assignment of
probability p to event A as the willingness of a rational agent to accept any of the two
following bets:

e If you pay me 3 p then I agree to pay you $1 if A is true (for p € [0,1])
o If you pay me $ (1-p) then I agree to pay you $ 1 if A is false

The first bet represents the belief that the probability of A is not larger than p, the second
bet represents the belief that the probability of A is not smaller than p.

Instead of being explicitly represented, ignorance is hidden in prior probabilities.
Further shortcomings are represented by the fact that it is impossible to assign any prob-
ability to disjunctions, i.e., to non-singletons, which implies the requirement for a uniform
granularity of evidence. This problem is usually solved with an approximation, using
the Maximum Entropy Principle (MEP). According to MEP, the probability assigned to
the disjunct (a subset of singletons in the sample space) is cqually divided among the
singletons in the subset. This approximation, however, creates an interpretation of the
original information, which may not always been appropriate. Finally, as was pointed
out by Quinlan [Qui83], in this approach conflictive information is not detected but sim-
ply propagated through the network. Some recent work in Bayesian Belief Networks
{CJINSO0] has actually provided some distinction between rare cases and conflicting data.
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1.3.3 Confirmation Theory (Certainty Factors)

The Certainty Factor (CF) approach [SB75], used in MYCIN, is based on Confirmation
Theory. The certainty factor CF(h,e) of a given hypothesis A is the difference between
a measure of belief MB(h,e) representing the degree of support of a (favorable) evi-
dence e, and a ineasure of disbelief MD(h,e) representing the degree of refutation of an
(unfavorable) evidence e. MB and MD are monotonically increasing functions that are
respectively updated when the new evidence supports or refutes the hypothesis under
consideration. The certain:y factor CF(h,e) is defined as:

1 if P(h)=1
MB(h,e) if P(h]e)> P(h)
CFth,e)=< 0 if P(hle)= P(h) (1.12)
~MD(h,e) if P(h|e) < P(h)
-1 if P(h)=0

The measures of belief MB and measure of disbelief MD could be interpreted as a
relative distance on a bounded interval. Given an interval (A.8] and a reference point R
within the interval, the relative distance d(X.R) between any arbitrary point X within the
interval and the reference R can be defined as:

E=B if X >R

dX.R)=( 0 if X =R (1.13)
B if X < R

By making the following substitutions in equation 1.13
A=0 B=1 R=P(h) X=Phle

the definition of the measure of belief (MB) and measure of disbelief (MD) can be

obtained:
P(hle)-FP(m

MB(h,e) = { =Pty i P(h]e)> P(h) (1.14)
0 otherwise

PR-PRID if P(h|e) < P(h)

MD(h.e) = { 0 P (1.15)

otherwise

The CF was origirally interpreted as the relative increase or decrease of probabilities.
In fact, from equations 1.12, 1.14, and 1.15, it can be shown that:

P(hte)= P(h)+CF(h,e)-[1 - P(h)] forCF(h.e)>0 (1.16)

P(h| €)= P(h)— | CF(h,e)| -P(h) for CF(h.e) <0 (.17

Too often the CF paradigm has been incorrectly used in reasoning systems, inter-
preting the CFs 5 absolute rather than incremental probability values. The onginal
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interpretation of the CF as a probability ratio, however, can no longer be preserved ai-
ter the CFs have been aggregated using the heuristic conibining functions provided in
MYCIN [SB75].

[shizuka, Fu, and Yao (IFY82], {Ish82] have shown that these combining functions
were an approx'mation of the classical Bayesian updatng procedure, in which a term
had been neglected. In their analysis it was concluded that the assumption of mutual
independence of evidence was required for the correct use of this approach. The original
definition of certainty factor is asymmetric and prevents commutativity. Another source
of concern in the use of CFs is caused by the normalization of MBs and MDs before
their arithmetic difference is computed. This normalization hides the difference between
the cardinality cof the set of supporting evidence and that of the set of refuting evidence.

L.chanan & Shortliffe [BS84] have proposed a change to the definition of CF and
its rules of combination:

M B(h,e) = M D(h,e)

_ 1.1
CEh ) = T (M B(he). M D(h ) N
z+y— 1y forz >0, y>0
CFeom3INE(@ W) = TomnleTD MDA

—CFcomBIng(—2z,-y) forz <0, y<0
(1.19)
where

C;F(h.el)=a: and CF(h,e) =y

This new definition avoids the problem of allowing a single piece of negative (posi-
tive) evidence to overwhelm several pieces of positive (negative) evidence. However, it
has even less theoretical justification or interpretation than the original formulae.

Recendy, Heckerman [Hec86] has derived a new definition for the CF that does aliow
commutativity and has a consistent probabilistic interpretation. The new definition is:

P(h | e) - P(h)

CH = BTl = PO + PO = PG T o)

(1.20)

There are still numerous serious problems that characterize this approach: the seman-
tics of the CF, 1.e., the interpretation of the number (ratio of probability, com' ‘nation of
utility values and probability); the assumptions of independence of the evidence; and the
inability of distinguishing h=tween ignorance and conflict, both of which are represented
by the assignment (CF = vu,.

This type of representation of uncertainty has also been advocated by Rich [Ric83] as
an alternative to default reasoning. In her work, Rich claims that default reasoning could
actually better be interpreted as likelihood reasoning, providing a uniform representation
for statistical, prototypical and definitional facts.
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1.3.4 Bayesian Belief Networks

An efficient propagation of belief on Bayesian Networks has been originally proposed
by J. Pearl [Pea82]. In his work, Pearl describes an efficient updating scheme for trees
and, 0 a lesser extent, for poly-trees [Pea88a]. However, as the complexity of the graph
increases from trees to poly-trees to general graphs, so does the computational complexity.

The complexity for trees is O(n?) where n is the number of values per node in the
tree.

The complexity for poly-trees is O(A™™) where K is the number of values per parent
node and m is the number of parents per child This number is the size of the table
attached to each node in the poly-tree. Since the table must be constructed manually
(and updated automatically), it is reasonable to expect it to be small.

However, the complexity of mulit-connected graphs is O(K™) where K is the number
of values per node and n is the size of the largest non-decomposable subgraph.

To handle such complexity, techniques such as moralization and propagation in a
tree of cliques [LD88)] and loop cutset conditioning are typically used to decompose the
original problem (graph) into a set of smaller problems (subgraphs). When this problem
decomposition process is not possible, exact methods must be abandoned in favor of
approximate methods. Among these methods the most common are clustering, bounding
conditioning, and simulation techniques (logic samplings and Markov simulations). See
figure 1.1.

1.3.5 Dempster-Shafer (Belief Theory)

The Belief Theory, proposed by Shafer [Sha76], was developed within the framework of
Dempster’s work on upper and lower probabilities induced by a multivalued mapping?

In this context, the lower probabilities have been identified as epistemic probabilities
and associated with a degree of belief. This formalism defines certainty as a function
that maps subsets of a space of propositions on the [0,1] scale. The sets of partial
belicfs are represented by mass distributions of a unit of belief across the propositions in
. This distribution is called basic probability assignment (bpa). The total certainty over
the space is 1. A non-zero bpa can be given to the entire space to represent the degree of
ignorance. Given a space of proposiuons , referred to as frame of discernment, a function
m 2 — [0,1] is called a basic probability assignment if it satisfies the following three
conditions:

>The one-t0-many nature of the mapping is the fundamental reason for the inability of applying the well-
known theorem of probability that ‘~termines the probability density of the image of one-to-one mappings.
In fact, given a differentiable smnciy-increasing or strictly-decreasing function ¢ on an interval I, and a
continuous random variable X with a density f, such that f(z) = O for any x outside I, then the density
function ¢ can be computed as:
dr
dy

9(y) = f(o) Sl ve o(Dand r=d""(y)
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Multiply-connected Branch and Bound
Nets Search

Figure 1.1: Taxonomy of Inference Mechanisms for Bayesian Belief Networks

m(¢) =0 where ¢ is the empty set (1.21)
0<m(A) <1 (122)
S m(4)=1 (123)

AC

The certainty of any proposition B is then represented by the interval [Bel(B), P*(B)],
where Bel(B) and P*(B) are defined as:

Bel(B)= Y _ m(z) (1.24)
zCB

PrB)= Y m (1.25)
=NB7

From the above definitions the following relation can be derived:
Bel(B)=1 - P*(-B) (1.26)
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If my and m; are two bpas induced from two independent sources, a third bpa, m(C),
expressing the pooli1g of the evidence from the two sources, can be computed by using
Dempster’s rule of combination:

2 anB,=c Mi(A) - ma(B;)
1 = 3 4,nB,=¢ M1(A:) - m2(B;)

m(C) = 127

Dempster’s rule of combination normalizes the intersection of the bodies of evidence
from the two sources by the amount of non-conflictive evidence between the sources.
This amount is represented by the denominator of the formula.

There are two problems with the Belief Theory approach. The first problem stems
from computational complexity: in the general case, the evaluation of the degree of belief
and upper probability requires time exponential in ||, the cardinality of the hypothesis
sct (frame of discemment). This is caused by the need of (possibly) enumerating all
the subset and superset of a given set. Bamett [Bar81] showed that, when the frame of
discemment is discrete (and simple support functions are used), the computational-time
complexity could be reduced from exponential to linear by combining the belief functions
in a simplifying corder. Strat [Str84] proved that the complexity could be reduced to
O(n?), where n is the number of atomic propositions, i.e., intervals of unit length, when
the frame of discemment is continuous. In both cases, however, these results were
achieved by introducing various assumptions about the type and structure of the evidence
to be combined and about the hypotheses to be supported. As a result, in addition to the
requirements of mutual exclusive hypotheses and independent evidence which are needed
by this approach, the following constraints must be included: for the case of discrete
frame of discemment, each piece of evidence is assumed to support only a singleton
proposition or its negation rather than disjunctions of propositions (i.e., propositions with
larger granularity); for the case of continuous frame of discenment, only contiguous
intervals along the number line can be included in the frame of discemment and thus
receive support from the evidence.

The second problem in this approach results from the normalization process present
in both Dempster’s work and Shafer’s. Zadeh [Zad84b] [Zad85a] has argued that this
normalization process can lead to incorrect and counter-intuitive results. By removing
the conflictive parts of the evidence and romalizing the remaining parts, important
information is discarded rather than being dealt with adequately. A proposed solution
to this problem is to avoid completely the normalization process by maintaining an
explicit measure of the amount of conflict and by allowing the remaining information to
be subnormal (i.e., Bel() < 1). Zadeh [Zad85a] has proposed a test to determine the
conditions of applicability of Dempster’s rule of combination. Dubois and Prade [DP85]
have also shown that the normalization process in the rule of evidence combination
creates a sensitivity problem, where assigning a zero value or a very small value to a
bpa causes very different results. It should be noted that this behavior also occurs in
other probabilistic schemes, where the assignment of a value of zero to a prior probability
would prevent any subsequent updating.
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Ginsberg [Gin84] has proposed the use of the Dempster-Shafer approach as an al-
termative to non-monotonic logic. This suggestion is an extension to Rich’s idea of
interpreting default reasoning as likelihood reasoning [Ric83]. In his work, Ginsberg
provides a rule for propagating the lower and upper bounds through a reasoning chain
or graph. His result is based on the interpretation of a production rule as a conditional
probability rather than as a material implication. Smets [Sme81], [Sme88] has further
explained the relations between belief functions, plausibilities, necessities, and possibil-
ities and has extended Dempster’s concepts to handle the case when the evidence is a
fuzzy set [Zad65).

Evidential Reasoning

Evidential Reasoning, proposed by Garvey, Lowrance, and Fischler [GLF81], [LG83],
[LGS86) adopts the evidential interpretusuion of the degrees of belief and upper prob-
abilities. Fundamentally based on Dempster-Shafer’s theory (as described in Subsec-
tion 1.3.5), this approach defines the likelihood of a proposition A as a subinterval of
the unit interval [J,i). The lower bound of this interval is the degree of support of the
propositicn, S(A), and the upper bound is its degree of plausibility, P1(A). The likelihood
nf a proposition A is written as A(s(a),pi(4)- The following sample of interval-valued
like'ihoods illustrates the interpretation provided by this approach:

Ap.1p { No knowledge at all about A

Apo | Alis false

Apnyy | Als true

A(31) | The evidence partially supports A

Ao.n1 | The evidence partially supports - A

Ara.n | The evidence simultaneously provides partial support for A and -~ A
Ara.31 | The probability of A is exactly 0.3

Given two statements A(sca),pi4)] and Biscg) pis))» the set of inference rules corre-
sponding to the logical operations on these statemenis are defined [GLF81] as:

INTERSECTION: AN D(A, B){maz(0,5( AW S(BY— 1) .min(PIA). PIUB) (1.28)
UNION:O R(A, B)(maz(S(4).5(B)),min(1,PI(AyPIB))] (1.29)
NEGATION: NOT (A1 - Pi(4)1-5(A) (1.30)

This approach, embodied in GISTER [LGS86], implements Dempster-Shafer (D-
S) theory. When distinct bodies of evidence must be pooled, this approach uses the

same Dempster-Shafer’s techniques, requiring the same normalization process that was
criticized by Zadeh.
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1.4 Possibilistic Reasoning: Theories and Approaches

1.4.1 Triangular Norm Based Reasoning Systems

Among the possibilistic reasonung technigues, we will discuss the cnes besed on manv-
valued logic operators (Triangular norms or T-norms) and the generalized modus ponens.
These possibilistic techniques have been implemented in RUM {5} and [BW89], a rea-
soning shell further described in section 1.5.1. For the reader’s convenience, RUM's
theory is briefly summarized in this section.

Uncertainty in RUM is represented in both facts and rules. Facts are qualified by
a degree of confirmation and a degree of refutation. For a fact A, the lower bound of
the confirmation and the lower bound of the refutation are denoted by L(A) and L(-~A)
respectively. As in the case of Dempster’s [Dem67] lower and upper probability bounds,
the following identity holds: L(-~A) = 1 - U(A), where U(A) denotes the upper bound
of the uncertainty in A and is interpreted as the amount of failure to refute A. Note that
L(A) + L(- A4), need not necessarily be equal to 1, as there may be some ignorance about
A which is given by (1 - L(A4) - L(-A)). The degree of confirmation and refutation for
the proposition A can be written as the interval [L(A4), U(A4)].

RUM provides a natural representation for plausible rules. Rules are discounted by
sufficiency (s), indicating the strength with which the antecedent implies the consequent
and necessity (n), indicating the degree to which a failed antecedent implies a negated
consequent. Note that conventional strict implication rules are special cases of plausible
rules with s = 1 and n = 0. RUM'’s inference layer is built on a set of five Triangular
norms (T-norms) based calculi [3]. T-nomms and T-conorms are two-place functions from
(0,1]1x[0,1] to {0,1] that are monotonic, commutatve and associative. They are the most
general families of binary functions which satisfy the requirements of the conjunction
and disjunction operators respectively. Their corresponding boundary conditions sat'sfy
the truth tables of the logical AND and OR operators. Five uncertainty calculi based on
the following five T- norms are used in RUM:

Ti(a,b) = maz(0,a+b-1)

Tis(a,b) =(a® +8°5 - 1)%  if (%5 +4%5) > 1
=0 otherwise

Ta(a,b) =ab
Trs(a,b) =(a~'+b-1=1)"

T3(a,b) = min(a,b)

Their corresponding DeMorgan dual T-conorms, denoted by S,(a,b), are defined as

Sia,b)=1-T;(1 ~a,1 -b)
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These five calculi provide the user with an ability to choose the desired uncertainty
calculus starting from the most conservative (T1) to the most liberal (T3). T; (T3) is the
most conservative (liberal) T-norm in the sense that for the same input certainty ranges
of facts and rule sufficiency and necessity measures, T (T3) shall yield the minimum
{maximum) Jdegree of confirmation of the conclusion, For each calculus (represented hy
the above five T-norms), the following four operations have been defined in RUM:
Antecedent Evaluation. To determine the aggregated certainty range (b, B] of the n
clauses in the antecedent of a rule, when the certainty range of the ith clause is given by
(b, Bi):

(b, B] = [Ti(b1, b2, ..., b,), Ti(B1, Ba,..., Brn))

Conclusion Detachment: Modus Ponens. To determine the cenainty range, [c,C] of
the conclusion of a rule, given the aggregated certainty range, [b,B] of the rule premise
and the rule sufficiency, s and rule necessity, a:

[C, C] = [Ti(sa b)vl - (I:(nv(l - B)))]

Conclusion Aggregation. To determine the consolidated certainty range [d, D], of a
conclusion when it is supported by m (m > 1) paths in the rule deduction graph, i.e., by
m rule instances, each with the same conclusion aggregation T-norm operator. If [¢;, C;]
represents the certainty range of the same conclusion inferred by the ith proof path (rule
instance), then

[d, D} =[Si(c1,¢2,...¢m), S{Cy,Ca,...,Cr)]

Source Consensus. To determine the certainty range, [L:y:(A), Uot(A)] of the same
evidence, A, obtained by fusing the certainty ranges, { L;(A4), U:(A)], of the ith in"ormation
source out of a total of n different possible information sources:

[Leot(A), Uror(A)] = [Maziz1 .. .n Li(A), Minizy . 2 Ui(A)]

The theory of RUM is anchored on the semantics of many-valued logics [3]. Unlike
other probabilistic systems, RUM’s reasoning mechanism is possibilistic. Reference [3]
describes a comparison of RUM with other reasoning with uncertainty systems, such
as Modified Bayesian [DHN76], Certainty Factors [SB75], [Hec86], Dempster-Shafer
[Dem67], {Sha76], and Fuzzy logic {Zad65].

1.5 Technology for Possibilistic Reasoning
We have embedded the theory of possibilitic reasoning in an integrated reasoning system

composed of RUM (5], arich, user-friendly development environment, and RUMrunner, a
small and quick run-time system, and translation software to span the two (see Figure 1.2).
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Figure 1.2: Software Engineering with RUM and RUMrunner

1.5.1 Possibilistic Reasoning System: RUM

RUM embodies the theory of plausible reasoning described in the previous section. RUM
provides a representation of uncertain information, uncertainty calculi for inferencing, and
selection of calculi for inference control. Uncertainty is represented in both facts and
rules. A fact represents the assignment of a value to a variable. A rule represents the
Jeduction of a new fact (conclusion) from a set of given facts (premises). Facts are
qualified by a degree of confirmation and a degree of refutation. As we have noted in
Subsection 1.4.1, rules are discounted by sufficiency, indicating the strength with which
the premise implies the conclusion, and necessity, indicating the degree to which a failed
premise implies a negated conclusion. The uncertainty present in this deductive process
leads to considering several possible values for the same variable. Each value assignment
is qualified by different uncertainties, which are combined with T-norm based calculi as
described in [3] and [4].

RUM’s rule-based system integrates both procedural and declarative knowledge in
its representation. This integration is essential for solving situation assessment problems,
which involve both beuristic and procedural knowledge.

The expressiveness of RUM is further enhanced by two other functionalities: the
context mechanism and belief revision. The context represents the set of preconditions
determining the rule’s applicability to a given situation. This mechanism provides an
efficient screening of the knowledge base by focusing the inference process on small
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rule subsets. For instance, in SA, selected rules describe the behavior of friendly planes,
while others should only be applied to unfriendly or unidentified ones. The rule’s context
provides this filtering mechanism.

RUM's belief revision is essential to the dynamic aspect of the classification problem.
The belief revision mechanizm detects changes in the input, keeps track of the dependency
of intermediate and final conclusions on these inputs, and maintains the validity of these
inferences. For any conclusion made by a rule, the mechanism monitors the changes in
the certainty measures that constitute the conclusion’s support. Validity flags are used
to reflect the state of the centainty. For example, a flag can indicate that the uncertainty
measure is valid, unreliable (because of a change in the support), too ignorant to be
useful, or inconsistent with respect to the other evidence.

RUM offers both backward and forward processing. A lazy evaluation, running in
backward mode, recomputes the certainty measures of the minimal set of facts required
to answer a given query. This mode is used when the system or the user decide that they
are dealing with time-critical tasks. Breadth-first, forward mode processing recomputes
the certainty measures attempting to restore the integrity of the rule deduction graph.
This mode is used by the system when time is not critical.

These Al capabilities are used to develop a knowledge base, in conjunction with
RUM’s software engineering facilities, such as flexible editing, error checking, and de-
bugging. Some of these features, however, are no longer necessary once the development
cycle is complete. At run-time, applications do not create new knowledge (facts or rules),.
because their basic structures have been determined at compile-time. The only run-time
requirement is the ability to instantiate rules and facts from their predetermined defi-
nitions. By eliminating the development features that are unnecessary at run-time, a
real-time Al system can improve upon the algorithms and methodologies used in RUM.

1.5.2 Possibilistic Reasoning System: RUMrunner

The objective of RUMrunner [Pfa87] is to provide a software tool that transforms the
customized knowledge base generated during the development phase into a fast and
efficient real-time application. RUMrunner provides both the functionality to reason
about a broad set of problems and the speed iequired to properly use the results of the
reasoning process. Performance improvements are obtained by implementing all RUM’s
functionalities with leaner data structures, using Flavors (for the Symbolics version) or
defstructs (for the Sun version). Furthermore, RUMrunner no longer requires the use of
the KEE sofiware, thus it can be run on any Symbolics or Sun workstation with much
smaller memory configurations and without a KEE software license. RUMrunner has
four major qualities: it provides a meaningful subset of Al techniques; it runs fast; it has
the functionality of a real-time system; and it does not require the software engineer to
reprogram the application in the target environment.

This goal is achieved by a combination of efforts: the translation of RUM’s (de-
velopment system) complex data structure into simpler, more efficient ones (to reduce
overhead); the compilation of the rule set into a compiled network (to avoid run-time
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search); the load-time estimation of each rule's execution cost (to determine, at run-time,
the execution cost of any given deductive path); and the planning mechanism for model
seleciion (1o determine the largest relevant rule subset which could be executed within a
given time-budget). Figure 1.3 shows the RUMrunner architecture.

scheduler | [ agenda
task1
=R . task2
T——— task3
translator code generator . planner | ’
(Lisp) rule
~ network v
code generator ; I+ d |”f .
() mings | | 9| Inference
nalyzer
= eng'lnes output
! buffer
L 8C ! FC
Translation System Execution System

Figure 1.3: RUMrunner Architecture

An agenda mechanism is used to asynchronously receive any number of input tasks
(such as backward-chaining on a goal or forward-chaining on a given piece of evidence)
from various sources. Each task in the agenda receives a (static) priority number, deter-
mining the relative importance of the task with respect to the others. A time deadline,
expressed in absolute time, is attached to the task to indicate its urgency (i.e., its expiration
time), which is used by the planning mechanisms described below.

A scheduler sorts the tasks by priority and, within the same priority level, by the
shortest deadline. The the highest priority task is then scheduled for execution by the
forward or backward chainer. [DL87].

The results of these tasks are in turn isolated from external connecting systems via
buffers or streams and a layer of interface functions.

External or internal interrupts, with re-entrant reasoning, can supersede the current
task. There are three classes of interrupts possible: internal interrupts caused by queries
approaching their assigned time deadlines or exceeding other reasoning resources; exter-
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nal interrupts caused by queries with higher prionity than the one currently addressed;
and external interrupts caused by new input data characterized by higher priority than the
current query. Since the state of the current knowledge base is dynamically maintained
in the knowledge base nodes themselves, any changes to the knowledge base by the
interrupting task will be automatically taken into account when the pre-empted task is
resumed.

In order to keep track of time requirements and resources available to ensure real-
time response, a planning and allocation module provides a controi layer on top of the
inference mechanisms. Our planning scheme considers a backward chaining query to be
a goal which csn be satisfied by using various inference paths. Planning for real-time
performance involves generating a set of plans (solution paths), evaluating their usefulness
and cost, and selecting some or all of them to be used to satisfy the query within a given
time deadline. Since the solutions have some associated uncertainty, executing multiple
plans may improve the quality (certainty) of the initial result.

The current implementation generates and uses these plans in a fairly simple way,
maximizing the total number of nodes in the solution set (within the allocated time
budget) without considering any further plan attributes. The plan set is fully enumerated
and committed to before the task is begun, without any considerations for efficiency or
interruptibility.

Our approach for improving this strategy involves imposing an initial ordering on
the set of plans, based on several significant measures of each plan’s cost and expected
benefit. As each plan is executed, in “best-first” order, this initial ordering may be
updated as additional values and certainties are inferred, making the planning process
more opportunistic. Executing the plans in order of expected overall utility also provides
for interruptbility, since a partial answer becomes available as soon as the first plan has
been completed.

In summary, RUMrunner takes advantage of the fact that the application has been
completely developed and debugged. It provides a minimum of error checking because
the application is assumed either to be debugged already, or 1o be robust enough to handle
errors. RUMrunner’s time performance in reasoning tasks is partially attributed to the
compilation of the knowledge base. As a result of this compilation, new or different
rules or units cannot be created in the knowledge base after the translation. Finally,
RUMrunner is implemented in Common LISP, thus it can be ported to many machines
without requiring any proprietary software. RUMrunner, is further elaborated upon in
(Pfa87].

The reasoning technologies described in the previous section have been tested in
a variety of applications, such as Pilot’s Associate, Submarine Commander Associate,
Air Land Battle Management (Division Level Fire Support). These applications are all
examples of the dynamic classification paradigm that is described in the following section.
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1.5.3 Possibilistic Reasoning System: PRIMO

The most recently developed technology embodying possibilistic reasoning techniques is
the Plausible Reasoning MOdule (PRIMO). Developed as part of the Knowledge-Based
System Technology Base in the Strategic Computing Initiative, PRIMO is a reasoning
system which integrates the theories of plausible reasoning (based on monotonic rules
with degrees of uncertainty) and defeasible reasoning (based on default values supported
by nonmonotonic rules). The PRIMO system consists of a representation language which
includes declarative specifications of uncertainty and default knowledge, reasoning algo-
rithms, and an application development environment.

In this section we review the theoretical foundations of PRIMO (see (5, BCGS89))
and discuss PRIMO’s implementation.

Uncertainty

The uncertainty representation used in PRIMO is based on the semantics of many-valued
logics. PRIMO, like its predecessor RUM (3], uses a combination of fuzzy logic and
interval logic to represent and reason about uncertainty. This approach has been suc-
cessfully demonstrated in two DARPA applications: the Situation Assessment Module
of Pilot's Associate (Phase I) and the technology demonstration of the Submarine Oper-
ational Automation System (Phase I).

PRIMO handles uncertain information by qualifying each possible value assignment to
any given propositional variable with an uncertainty interval. The interval’s lower bound
represents the minimal degree of confirmation for the value assignment. The upper bound
represents the degree to which the evidence failed to refute the value assignment. The
interval's width represents the amount of ignorance attached to the value assignment. The
uncertainty intervals are propagated and aggregated by Triangular-norm-based uncertainty
calculi (see [1, 3, SS83, 6]). The uncertainty interval constrains intervals of subsequent,
dependent values.

Incompleteness

PRIMO handles incomplete information by evaluating non-monotonic justified (NMJ)
rules. These rules are used to express the knowledge engineer’s preference in cases
of total or partial ignorance regarding the value assignment of a given propositional
variable. The NMJ rules are used when there is no plausible evidence (1o a given
numerical threshold of belief or certainty) to infer that a given value assignment is either
true or false. The conclusions of NMJ rules can be retracted by the belief revision system,
when enough plausible evidence is available.

PRIMO uses the numerical centainty values generated by plausible reasoning tech-
niques to quantitatively distinguish the admissible extensions generated by defeasible rea-
soning techniques. The method selects a maximally consistent extension (see [BCGS89])
given all currently available information.
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For efficiency considerations some restrictions are placed on the language in which
one can express PRIMO rules. The monotonic rules are non-cyclic Homn clauses, and
are maintained by a linear belief revision algorithm operating on a rule graph. The NMJ
rules can have cycles, but cannot have disjunctions in their conclusions.

By identifying sets of NMJ rules as strongly connected components (SCC’s), we
can decompose the rule graph into a directed acyclic graph (DAG) of nodes, some of
which are SCCs with several input edges and output edges. PRIMO contains algorithms
to efficiently propagate uncertain and incomplete information through these structures
at run time. Treating the SCCs independently can result in a significant performance
improvement over processing the entire graph. However, this heuristic may result in
loss of correctness in the worst case. These algorithms require finding satisfying assign-
ments for nodes in each SCC, and are thus NP-hard in the unrestricted case. We can
achieve tractability by restricting the size and complexity of the SCC’s, precomputing
their structural information, and using run-time evaluated certainty measures to select the
most likely extension.

A more detailed description of PRIMO can be found in Sections 9 and 10.

1.6 Desiderata for Reasoning with Uncertainty

~ In the previous section we have discussed probabilistic and possibilistic reasoning tech-
nologies. In this section we will compare them against a set of requirements. This idea
was first proposed by Quinlan, who suggested a list of four requirements to illustrate the
shortcomings of the Bayesian and Confirmation theory approaches and to compare them
with INFERNO, his proposed approach to uncertain inference [Qui83]. The requirements
proposed by Quinlan were:

¢ “An inference system should not depend on any assumptions about the probability
distributions of the propositions™.

¢ "It should be possible to assert common relationships between propositions ... when
the relationships are indeed known™.

¢ “It should be possible to posit information about any set of propositions and observe
the consequences for the system as a whole”

¢ “If the information provided to the system is inconsistent, this fact should be made
evident along with some notion of alternative ways that the information could be
made consistent”.

Quinlan’s work has been inspirational in the development of the following desiderata,
which subsumes and extends Quinlan’s initial list. The proposed desiderata describes the
requirements to be satisfied by the ideal formalism for representing uncertainty and mak-
ing inference with uncertain information. To be consistent with the organizing principle
typical of automated reasoning systems, the desiderata is subdivided into the same three
layers of Representation, Inference and Control.
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Representation Layer

1.

There should be an explicit representation of the amount of evidence for supporting
and for refuting any given hypothesis.

There should be an explicit representation of the information about the evidence, i.e.,
meta-information, such as the evidence source, the reasons for supporting and for
refuting a given hypothesis, etc. This meta-information will be used in the control
layer to remove conflicting pieces of evidence provided by different sources.

. The representation should allow the user to describe the uncertainty of information at

the available level of detail, ranging from singletor.s © any subset of the universe of
discourse. We will refer to this property as heterogeneo:ts information granularity.

. There should be an explicit representation of consistency. Some measure of consis-

tency or compatibility should be available to detect trends of potential conflicts and
to identify essential contributing factors in the conflict.

. There should be an explicit representation of ignorance to 2Hlow the user to make non-

committing statements, i.e., to express the user’s lack of conviction about the certainty
of any of the available choices or events. Some measure of ignorance, similar to
the concept of entropy, should be available to guide the gathering of discriminant
information.

The representation must be, or at least must appear to be natural to the user to enable
him/her to describe uncertain input and 10 interpret uncertain output. The represen-
tation must also be natural to the expert to enable him/her to elicit consis.ent weights
representing the strength of the implication of each rule.

Inference Layer

7.

The combining rules should not be based on global assumptions of evidence inacy"n-
dence.

. The combining rules should not be based on global assumptions of hypctheses ex-

haustiveness and exclusiveness.

The combining rules should maintain the closure of thc syntax and semantics of the
representation of uncertainty.

10. Any function used to propagate and summarize uncertainty should have clear seman-

tics. This is needed both to maintain the semantic closure of the representation and
to allow the control layer to select the most appropnate combining rules.
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Controi Layer

11. There should bx a clear distinction between a conflict in the information (i.e., viola-
tion of consistency), and ignorance about the information. To solve the conflict, the
controller (meta-reasoner) must retract one or more elements of the conflicting set of
evidence. To remove the ignorance, the controller must select a (retractable) default
value or tag the information with an assumption.

12. The traceability of the aggregation and propagation of uncertainty through the rea-
soning process must be available to resolve conflicts or contradictions, to explain the
support of conclusions, and to perform meta-reasoning for control.

13, It should be possible to make pairwise comparisons of uncertainty since the induced
ordinal or cardinal ranking is needed for perfornuing any kind of decision-making
activities.

14. It should be possible to select the most appropriate combination rule by using a
declarative form of control (i.e., by using a set of context dependent rules that specify
the selection policies).

1.6.1 Evaluation of the Approaches
The above desiderata was used to guide the development of RUM and PRIMO.
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Figure 1.4: Evaluation of Uncertainty Approaches Against the Desiderata

Table 1.4 summarizes the evaluation of the formalisms discussed in the previous
section against this desiderata. The order in which the formalisms appear in the table
reflects their numeric or non-numeric nature: the numeric formalisms are listed above
RUM/PRIMO, the non-numeric ones are shown below it. RUM/PRIMO is considered a
hybrid as it uses both numeric and symbolic information.
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Evaluation of PRIMO

This part of the section illustrates how PRIMO meets the majority of the requirements
described in the above desiderata.

Representation Layer

1.

Explicit representation of the amount of evidence for supporting and for refuting any
given hypothesis.

Yes: Any evidence A has an associated unit with the numerical interval [L(A), U(A)]
that capture the amounts of support and refutation. The boundaries of this interval
can take numerical or linguistic probability values.

. Explicit representation of the information about the evidence, i.e., meta-information

Yes: PRIMO’s representation layer contains symbolic information. For input nodes
PRIMO stores the source of the evidence and its credibility. for intermediate nodes,
PRIMO maintains the logical support and the amount of discounting used on the path
leading to the node. This information is used by the control layer to efficiently im-
plement the nodes belief revision and to resolve ignorance or conflicts among various
sources.

. Heterogeneous information granularity

Nc - PRIMO rule representation language only allows the user to have singletons in
the right-hand side of each rule. Therefore, PRIMO can only qualify the belief of
value assignments to single vanables, rather than to arbitrary subsets of variables.

. Explicit representation of consistency

Yes: A violation of the constraint L(A) < U(A) will detect the occurrence of an
inconsistency. In this case, a simple measure of the inconsistency is given by the
difference L(A) — U(A). This measure of consistency is needed to detect trends of
potential conflicts and to identify essential contributir.z factors in the conflict.

. Explicit representation of ignorance

Yes: The difference between the upper and lower bound, ie. U(A) — L(A) is a
measure of the amount of lack of commitment or ignorance. Thus the width of the
interval is used to express the user or system's lack of conviction about the certainty
of any of the available choices or events.

Natural interpretation of the representation to the user and the expert

Yes: Lirguistic probabilities used by the user/expert to assess likelihood estimates
provide a natural, easy to calibrate uncertainty representation. In the intemal para-
metric representation the linguistic probabilities are mapped into fuzzy intervals. The
parametric representation provides a ccmmon and efficient formalism in which more
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precise estimates, such as crisp probabilities or crisp intervals, can be used in con-

junction with the linguistic probabilities.

Inference Layer

7.

Removing global assumptions of evidence independence from combining rules

Yes: The calculus selection is driven by local contextual information. In those con-
texts where the evidence is independent, the appropriate T-norm, such as T3, will be
selected.

Removing global assumptions of hypotheses exhaustiveness and exclusiveness from
combining rules

Yes: No global assumptions are used in the calculus selection. This particular as-
sumption is not needed since no normalization pro<ess takes place.

Maintaining syntactic and semantic closure of the representation under the combining
rules

Yes: The T-norm based calculi maintain the semantic closure of the data. A closed-
form solution to the extension principle problem provides a set of formulae that main-
tain the closure of the parametric representation used to internally characterize the
information. The linguistic probabilitics used as an option in describing the input
from the user/expert are represented in the same parametric form. At the end of the
reasoning process the parametric form can be expressed again in term of linguistic
probabilities by using the linguistic approximation process.

10. Clear semantics of the combining rules

Yes: Any function used to propagate and summarize uncertainty should have clear
semantics. This is needed both to maintain the semantic closure of the representation
and to allow the control layer to select the most appropriate combining rules. The
uncertainty calculi used in the inference layer have distinct properties and meanings.
These characteristics are used in the control layer to define a set of context-dependent
selection policies.

The uncertainty calculi are ordered from a lower bound, the calculus based on T3,
to an upper bound, the calculus based on 73. This ordering can be interpreted as a
transition from negative correlation (T}) to positive correlation (73). Another possible
interpretation of the meaning of the proposed calculi is to consider their ordering as a
transition from a pessimistic (risk-avoidance) attitude (71), to an optimistic (gambling)
attitude (73).

Control Layer
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11. Clear distinction between conflict and ignorance

Yes: Conflict and ignorance of the uncertainty measure are mutually exclusive: conflict
occurs when L(A) > U(A), ignorance is present when L(A) < U(A).

This distinction is important since the controller must react differently to each -ase:
to solve the conflict, the meta-reasoner must retract one or more elements of the
conflicting set of evidence; to remove the ignorance, the controlier must select a
(retractable) default value or tag the information with an assumption.

12. Traceability of the uncertainty aggregation and propagation

Yes: The separation between the inference and the control layer provides a mechanism
for tracing the selection and application of uncertainty calculi. This book-keeping
actvity can then be used by a Reason Maintenance System (RMS) to update the
uncertainty values that exhibit any dependency from a modified piece of evidence.

A first implementation of the belief revision of the uncertain information has been im-
plemented in the control layer of PRIMO’S Rule System. For any (propositional) con-
clusion made by a rule instance, the belief revision mechanism monitors the changes
in the certainty measures attached to the variable node that constitute the conclusion’s
support or the changes in the calculus used to compute the conclusion certainty mea-
sure. Validity flags are inexpensively propagated through the rule deduction graph.

The traceability of the aggregation and propagation of uncertainty through the rea-
soning process must be available to resolve conflicts or contradictions, to explain the
support of conclusions, and to perform meta-reasoning for control.

13. Pairwise comparisons based on an ordinal or cardinal ranking.

Yes: Various ordering functions can be used to rank two pieces of evidence on the
basis of their uncertainty measures. The simplest (complete) ordering is obtained
by selecting the evidence with the highest lower bound, i.c., A is preferred to B if
L(A) > L(B). A partial ordering function is obtained by selecting A over B if
{L(A),U(A)] > [L(B),U(B)]. Altematively, more complex partial ordering functions
could also be defined.

14. Selecting the most appropriate combining rule

Yes: The calculi selection is explicit and programmable by using a declarative form
of control, i.e., a set of context dependent rules that specify the selection policies.

1.7 Dynamic Classification Problems: Situation Assessment and
Tactical Planning
We have described, analyzed and classified various approaches to reasoning with uncer-

tainty according to their complexity, semantics, and computational cost. Now we want to
focus on the main functionalities of a class of problems known as classification problems.
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The Classification Problem (CP) was first i~troduced by Clancey [Cla84] in 1984,
and consists of recognizing a situation from a collection of data and selecting the best
action in accordance with some objectives. The classification problem has a recurrent
solution structure:

1. A collection of data, generated from several sources, is interpreted as a predefined
pattem.

2. The recognized pattern is mapped into a set of possible solutions.
3. One of these solutions is selected as the most appropriate for the given case.

This process was considered a static classification problem, since the input data were
assumed t0 be invariant over time, or at least invariant over the time required to obtain
the solution.

A more interesting and challenging case is the Dynamic Classification Problem (DCP),
originally described in [BW88], in which the environment from which data are collected
changes at a rate comparable with the time required to obtain a refined solution, requiring
real-time response. The characteristic structure of this class of dynamic classification
problems is illustrated in Figure 1.5.

1.7.1 Situation Assessment

As pant of the DCP, we will first describe Situation Assessment. Given a platform
(submarine) in a potentially hostile environment, the process of Situation Assessment
consists of the following tasks:

1. Sensor data is collected and consolidated from various sources, and fused into
related tracks representing individual comzacts. This process constitutes what is
generally known as information fusion or situation description.

2. For selected interesting contacts, the analysis is extended to determine the con-
tacts’ formation, use of special equipment, and maneuvering. This information is
used with the knowledge of the opponent’s doctrines and rules of engagement to
determine if the contact is aware of ownship, to analyze the contact’s hehavior and
to infer its probable intent and mission mode. These intents are then used to derive
a threat assessment, which is in turn combined with our mission description, the
contacts’ weapons type, and their perceived weapon-range, to estimate the contacts’
target value. These activities constitute the retrospective component of SA.

3. The current assessment of the situation is projected using a short-term horizon,
to estimate the contacts’ future position, course, intent, threat, target and to deter-
mine potentially dangerous or interesting events, before they occur and determining
ownship’s vulnerability. This constitutes the prospective component of SA.
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Figure 1.5: The Dynamic Classification Problem

4. Finally, the output of the Situation Assessment module is sent to a Tactical Planner
(TP) module, which determines the best course of action to follow. As a result, a
plan monitoring requests, defined by a set of geometrical or behavioral constraints
on contacts or events, may be sent back to the SA module, which will monitor
these constraints and notify TP of any existing or potential violations.

1.7.2 The Role of Uncertainty in SA-TP

To analyze the role and the impact of uncertainty management in SA and TP we will
refer to the process illustrated in Figure 1.6 (we assume that TP is implemented using
case-based planning technology).

This figure describes the need to achieve a trade-off between accuracy/coverage and
computational cost. We can observe that multiple scenes are generated by the Situation
Interpretation module, multiple interpretations for each scene are provided by the Sit-
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Figure 1.6: Ambiguity and Uncertainty in SA and TP

uation Interpreter module and multiple plans, developed for similar interpretations and
indexed by a set of abstract features, are retrieved by the Plan Retriever Module for each
interpretation. Finally, for each case (scene interpretation) a plan is selected, adapted,
projected and repaired (if needed). Among all these plans, one is finally selected for
execution,

It is clear that under real-time pressure, it is not possible to exhaustively analyze all
cases. It is therefore essential to control the number of scenes and scenes interpretations
and to focus TP's efforts on the most likely or important interpretations. Thus we suggest
to use a figure of merit for each scene, and, subsequently for each scene interpretation,
to control this potential information explosion. The following example illustrates the use
of Dempster-Shafer in deriving such a figure of merit for the classification enhancement
in a scene.

1.7.3 [Example 1: Use of Dempster-Shafer in SA Classification Enhancement

Let us assume that we are collecting information from two independent sensors, referred
to as Sensor 1 and Sensor 2. Sensor 1 has detected a contact M-1, determined that it was
a submarine, and provided a tentative classification:

Submarine of Type A 0.6
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Submarine of Type B 0.3
Some type of submarine 0.1

The second sensor has detected a second contact, M-2, determined that it was a
torpedo, and provided the following tentative classification:

Torpedo of Type X 0.6
Torpedo of Type Y 0.3
Some type of Torpedo 0.1

obtain nine possible worlds, as indicated by Figure 1.7.

X Y Ut

6 3 1

A8X ALY A&Ut
A .6 36 18 06

5 4 |[B&X B&Y B&Ut
18 09 03

Us&X Us&Y Us&Ut

Us .1

06 03 01

Figure 1.7: Generation of Nine Possible Worlds

The terms Us and Ut in Figure 1.7 refer to the universe of submarines and torpedoes,
respectively. From this figure we can observe that only three possible worlds (indicated
by the gray boxes) have a combined figure of merit which is greater than 0.1. We can
use these figures of merit to rank the possible worlds and to limit its processing as a
function of the real-time pressure we may experience. It is interesting to note that we
also get a sense for the amount of coverage that we are providing with this analysis. The
combined figures of merit of the three scenes (A& X),(A&Y).(B&X) give us a coverage
of 72% of all possible cases.

Let us now assume that, by looking at some intelligence data base, we discover
that submarines of type A typically carry torpedoes of type Y. We can represent this
information as: (A — Y)(0.9) and (A — Ut)0.1). We can express each implication by
its boolean equivalent and have: (=AU Y)(0.9) and (~A U Ut)(0.1).

If we now fuse this information with the previous sensor information we have an
update which is illustrated in Figure 1.8.
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® =0.324 (conflict)
A&X ARY A&Ut A&X ARY A&Ut
.36 .18 .06 .036 234 .006
B&X B&Y B&Ut B&X B&Y BaUt
18 .09 .03 .18 .09 .03
Us&X Us&Y Us&Ut UseX Us&Y Us&Ut
.06 .03 .01 A&X oy .03 .01

Figure 1.8: Result of the Updating Process

From Figure 1.8, by using equations 1.24 and 1.25 in Section 1.3.5, we can compute
the lower and upper bounds of each possible world before and after the update using the
intelligence information. This computation is shown in Figure 1.9,

A&X [.36, .49] A&X [.036, .166]

A&Y [.18, .28] A&Y [.234, .28]

B&X [.18, .28] B&X [.18, .28]

conflict set = .324

Figure 1.9: Computation of New Bounds

We can observe that the first possible world (A&X) has been dropped below our
threshold of 0.1. The second possible world (A& Y) has increased in its amount of belief,
while the third one (B&X) has not been affected by the update. We can also observe that
there is a substantial amount of conflict affecting the first two possible worlds, which
indicates that there is a certain amount of inconsistency between the sensors and the
intelligence information. This measure of conflict can be used to normalize the lower
and upper bounds, as it is also illustrated in Figure 1.10.

On the other hand, we can avoid normalization, and use the unnormalized lower and
upper bounds for relative ranking purpose. We can then use the measure of conflict as
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A8X [.36, .49] A&X [.053 .245]

A&Y [.18, .28] A&Y [.346, .414]

B&X [.18, .28] l B&X (266, .414]

after normalization

Figure 1.10: Computation of New Bounds (Normalized)

an indicator to determine when to task additional sensors (or to ask the SA Officer) to
disambiguate the situation and identify the most reliable sources of information.

1.8 Conclusions

1.8.1 Recommendations for SA - Contact Analysis

We have observed that there is a great pay-off in controlling the generation of scenes
generated by the Contact Analysis module. To achieve this goal, we need to attach a figure
of merii 1o each scene. This figure of merit can be used to rank the various scenes, to select
the most relevant ones (using a dynamic threshold on the figures of merit), to estimate the
amount of coverage, and to determine the possible loss of information incurred for not
processing the remaining scenes. The figure of merit can be augmented with a measure
of conflict, indicating the amount of inconsistency among the sources used to define the
scene. When this measure of conflict becomes too large, it becomes necessary to identify
the sources which must be removed from the information fusion process to maintain a
consistent scene. This task can be automatically accomplished either by tasking sensors
which can disambiguate the simation, or by generating and comparing possible worlds,
in each of which a different input has been eliminated. During this process it is important
to have models of the input sources (e.g., acoustics). By knowing the assumptions and
other preconditions that determine the applicability of the sensor models, we can identify
possible violations of these assumptions/preconditions and determine which information
source should be ignored. For example, the presence of a front could invalidate the
output of an acoustic model which was designed to handle only normal environmental
situations.

Altenatively, this task can be performed interactively, by presenting and explaining
the conflicting information and the generated posssible world altemnatives to the Situation
Assessment Officer.

Since the detection of conflicting information is so important, we should use column
4 in Figure 1.4 to select a reasoning with uncertainty technique capable of recognizing
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inconsistencies. From these techniques, our first suggestion is the use of Dempster-Shafer
(DS) theory.

Given the computational cost of DS method, however, it is necessary to determine
the size of the largest non-decomposable logical dependency graph which is part of the
Contact Analysis module.

This functional decomposition is actually required for all three modules in SA: Con-
tact Analysis, Sitation Analysis, and Situation Understanding. This analysis must be
based on a stable architecture design for SA and its three modules. For each of these
modules it is necessary to have the next level design specifications (e.g. for Situation
Understanding we need the specificatons for Lethality, Intent, Mission Mode and Aware-
ness). These specifications must include the number of input variables (and the number
of values considered for each variable); the number of ousput variables (and the number
of values considered for each variable); a sample of typical functional transformations
from inputs to outputs; and a detailed functional thread instantiating a sequence of mes-
sages and transformations. The above information can be used to estimate the worst-case
computational complexity for Dempster Shafer (and for Bayesian Belief Networks).

If this complexity is still unmanageable, we can always resort to a simplified (and
restricted) version of Dempster-Shafer [Bar81], which has time-linear complexity.

1.8.2 Recommendations for SA - Situation Analysis and Understanding

We strongly suggest the use of possibilistic reasoning, as implemented in PRIMO, to deal
with the interpretation of the scene. This suggestion is based on three major factors:

1. PRIMO’s low computational cost (linear in the number of nodes, under the restric-
tion of unidirectionality, i.e., DAG).

2. PRIMO's natural representation and use of similar, prototypical situations to pro-
vide a subjective interpretation/evaluation for a given situation.

3. PRIMO’s common semantics with the indices used by the plan retriever module in
the Tactical Planner.
1.8.3 Recommendations for TP - Plan Retriever

Based on a preliminary inspection of TP, we have identified the use of a possibilistic
reasoning technique to implement a similarity module for TP plan retriever. This retriever
can use the high-level output generated by SA (Situation Analysis and Understanding) to
generate a set of abstract features which will be compared with the indices stored with
the plans.

The following is a sample of indices used by TP Plan retriever:

¢ Contact Bearing: known

e Contact Distance : close
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¢ Speed of localization: rapid

¢ Likelihood of O/S/ Detection: low

¢ Primary Target Behavior: predictable
¢ O/S resources: normal

e Primary target distance: < 20kyd

o CD: stealthy

e Contacts: few(2-3)

o Target geometry: 2 quads

¢ Ship signature: normal

o Time pressure: moderate

Most of the linguistic values of these indices can be generated by possibilistic rules in
SA. Their semantics can be represented by fuzzy numbers on the corresponding universe
of discourse (e.g., a close contact distance can be defined by a characteristic function
showing a fuzzy interval on the units of kiloyards.) Based on this representation it is
possible to have a partial pattern matcher between the abstract features describing the
situation analysis/understanding and the indices attached to the stored plans. Based on
our previous experience in developing a possibilistic similarity module for case retrieval
[BBA90], we believe that this representation of uncertainty is the most suitable for the
job.
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Abstract

RUM (Reasoning with Uncertainty Module), is an integrated software tool based
on a KEE, a frame system implemented in an object oriented language. RUM’s
architecture is composed of three layers: representation, inference, and control.

The representation layer is based on frame-like data structures that capture the un-
certainty information used in the inference layer and the uncertainty meta-information
used in the control layer. The inference layer provides a selection of five T-norm
based uncertainty calculi with which to perform the intersection, detachment, union,
and pooling of information. The control layer uses the meta-information to select the
appropriate calculus for each context and to resolve eventual ignorance or conflict
in the information. This layer also provides a context mechanism that allows the
system to focus on the relevant portion of the knowledge base, ' an uncertain-
belief revision system that incrementally updates the centainty valu. of weil-formed
formulae (wffs) in an acyclic directed deduction graph.

RUM has been tested and validated in a sequence of experiments in both naval
and aerial situation assessment (SA), consisting of correlating reports and tracks,
locating and classifying platforms, and identifying intents and threats. An example
of naval situation assessment is illustrated. The testbed environment for developing
these experiments has been provided by LOTTA, a symbolic simulator implemented
in Flavors. This simulator maintains time-varying situations in a multi-player antag-
onistic game where players must make decisions in light of uncertain and incomplete
data. RUM has been used to assist one of the LOTTA players to perform the SA
task.

2.1 Introduction

The trend followed by most approaches for reasoning with uncertainty has shown an
almost complete disregard for the fundamental issues of automated reasoning, such as
the proper representation of information and meta-information, the allowable inference
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paradigms suitable for the representation, and the efficient control of such inferences
in an explicitly programmable form. The majority of the approaches to reasoning with
uncertainty do not properly cover these issues. Some approaches lack expressiveness
in their representation paradigm. Other approaches require unrealistic assumptions to
provide uniform combining rules defining the plausible inferences. Most approaches do
not even recognize the need for having an explicit control of the inferences.

This lack of awareness has been the driving force for compiling a list of requirements
(desiderata) that each reasoning system handling uncertain information should satisfy.
Following the typical structure of automated reasoning techniques, the list of requirements
has been organized in three layers: representation, inference, and control. The extension
of this explicit layered separation from crisp-reasoning systems to unceriain-reasoning
systems is a natural step leading to a better integration of the management of uncertainty
with the various techniques for automated reasoning.

An in-depth treatment of the layered desiderata can be found in a previous paper
{3]. In this article we describe RUM (Reasoning with Uncertainty Module), which repre-
sents our answer to the desiderata. We then illustrate two situation assessment problems
which have been used to validate RUM. Both applications are based on an architecture
designed to simulate various military scenarios involving Multi-Sensors/Multi-Targets
(MS/MT) and to perform situation assessment (SA) related tasks. The MS/MT architec-
ture, illustrated in Figure 2.1, is composed of two major blocks: a reasoning system and
a simulation environment.

WINDOW | KEELA I
MANAGER ANoTre i rorta B wrerrace | | snvigonsENT

CUSER-‘IJ PUSER-D

e e U , SRR A
KEE USER RUM RUM KEE FRAME REASONING
INTERFACE | ]| WFF SYSTEM [[{RULE SYSTEM |k SYSTEM | | SYSTEM

Figure 2.1: Architecture for Multi-Sensors/Multi-Targets (MS/MT)

RUM is the reasoning system used in this architecture. This system, built according
to the three layer desiderata, is thoroughly described in [5]. It is summarized in Sec-
tion 2.2, with a particular focus on its control layer. The second block of the MS/MT
architecture, the simulation environment, is described in Section 2.3, in conjunction with
some definitions of the tasks required to perform situation assessment. The last two sec-
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tions contain an analysis of the MS/MT experiment and some preliminary conclusions
on this work.

2.2 RUM, The Reasoning System

RUM is an integrated software tool based on KEE!, a frame system implemented in an
object oriented language [KEE86).” The underlying theory of RUM, centered around the
concept of Triangular norms, was described in two previous articles [3], [S]. RUM’s
architecture is composed of three layers: representation, inference, and control. A philo-
sophical motivation for RUM’s three layer organization can be found in [2]. This section
summarizes some of the theoretical results and provides a unified framework for their
interpretation and use in RUM’s architecture.

2.2.1 Representation: the Wff System and the Rule Language

The representation layer is based on frame-like data structures that capture the uncertainty
information used in the inference layer and the uncertainty meta-information used in the
control layer.

RUM'’s WIT System

RUM’s Wff System modifies KEE's representation of a wff (well-formed formula).
RUM'’s wff is the pair [<unit> <slot>], which is the description of a variable in the
problem domain. For each wff a corresponding uncertainty unit is created. The unit
contains a list of the values that were considered for the wff. For each value the unit
maintains its centainty’s lower and upper bounds, an ignorance measure, a consistency
measure, and the evidence source.

Figure 2.2 illustrates an example of an uncertainty unit attached to a wff. The wffis the
variable [Platform-439 Class-name]. In the uncertainty unit, under the slot VALUES, we
can see the possible values which were considered by the system and their corresponding
certainty bounds. The uncertainty unit also maintains a record of the rule instances
which were fired to derive such values (for inferred wifs, this logical support represents
the evidence source).

RUM’s WIf System allows the user to express arbitrary uncertainty granularity by

_providing the flexibility to mix precise and imprecise measures of certainty in defining the

input certainty (points, intervals, fuzzy numbers/intervals, linguistic values) and the rule
strengths (categorical and plausible IF/IFF). Various term sets of linguistic probabilities
with fuzzy-valued semantics (1] provide a selection of input granularity. The values of
the terrns can be used as default values or can be modified by the user.

'KEE is a trademark of IntelliCorp
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RUM'’s Rule System: The Rule Language

RUM's Rule System replaces KEE Rule System-3 capabilities by incorporating uncer-
tainty information in the inference scheme. The uncertain information is described in the
uncertainty units of the wffs, represented in RUM’s WIf System, and in the degrees of
sufficiency and necessity attached to each rule.?

The degree of sufficiency denotes the extent to which one should believe in the
rule conclusion, if the rule premise is satisfied. The degree of necessity indicates the
confidence with which one can negate the conclusion, if the premise fails.

A rule is internally represented by a frame with several slots. These slots include the
name of the rule; the lists of contexts, premises, and conclusions; the rule’s sufficiency
and necessity; and the T-norm to be used for aggregation. All slots (except the name,
premises, and consequences) have default values. The contexts, premises, and conclusions
can comprise values, variables, RUM predicates and arbitrary LISP functions. Rules
with unbound variables are instantiated with the necessary environment to produce rule
instances. An example of two RUM nrules is provided in Section 2.3.2.

The T-norm specified with each rule is used to aggregate the certainties of the rule
premises and to perform detachment (which computes the certainty of the conclusion
given the sufficiency and necessity of the rule). It defaults to T3, which is the MIN
function. The associated T-conorm is used to aggregate the certainties of identical con-
clusions inferred by multiple rule instances derived from the same rule. These are often
subsumptive, and the value defaults to S3, the MAX function. Finally, each separate con-
sequence of a rule has a specified T-conorm that will be used to aggregate the consequence
with identical consequences derived from different rules. (i.e., multiple assignments of
the same value to the wff). The negation operator causes the wff to be assigned the
complemented value.’

2.2.2 Inference: Triangular norms (T-norms) Based Calculi

Tue inference layer is Duili v o ur Sve Triangwlar o, 23 fT-nomns) based calculi. The
T-norms’ associativity and truth functionality entail problem decomposition and relatively
inexpensive belief revision. The theory of T-norms has been covered in previous articles
(1], 2], [3), [4], [S]. A brief review of their definition and their use in RUM is included
for the reader’s convenience.

1 is important 10 note that the inference symbol — in the production rule A - B is interpreted as a
(weak) material implication operator in multiple-valued logics. The value s is the lower bound of the degree
of sufficiency of the implication. This is in contrast with the interpretation of conditioning, i.e., s = P(B—A).
The symbol ~ in the production rule A L Bis interpreted as a (weak) logical equivalence operator in
multipie-valued logics, in which s and n are the lower bounds of sufficiency and necessity, respectively.
This (weak) logical equivalence is an if-and-only-if (IFF) rule, which can be decomposed into the two rules:
A L Band B 2 A (equivalent to ~A = ~B). RUM's rules are of the type: C — (A “7 B), where C
indicates the context of the rule (see Section 2.2.3) and — represents the strong material implication.

If a wff has a value A with an If the certainty interval attached to a value A is [L(A), U(A)], its
complemented value, — A, has a centainty interval defined by (1-U(A), 1-L(A)].
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Background Information on T-norms

Triangular noms (T-norms) and Triangular conorms (T-conorms) are the most general
families of binary functions that satisfy the requirements of the conjunction and dis-
junction operators, respectively. T-norms and T-conorms are two-place functions from
{0,1]x[0,1] to [0,1] that are monotonic, commutative and associative. Their corresponding
boundary conditions, i.e., the evaluation of the T-norms and T-conorms at the extremes
of the [0,1] interval, satisfy the truth tables of the logical AND and OR operators.

In a previous paper [1], six parametrized families of T-norms and dual T-conorms
were discussed and analyzed by the author. Of the six parametrized families, one family
was selected due to its complete coverage of the T-norm space and its numerical stability.
This family, originally defined by Schweizer & Sklar [6], was denoted by Ts.(a,b,p),
where p is the parameter that spans the space of T-norms. More specifically:

Ts(a,b.p)= (a=P+b-? — 1)" if (=P +577) >1 when p <0
Tsc(a,b,p)= 0 if (@P+b7?)<1 whenp<0
Ts(a,b,0)= lim,_oTsc(a,b,p) = ab when p — 0
Tse(a,6,p)= (a~P+b=P — 175 when p > 0

Its corresponding T-conorm, denoted by Ss.(a, b, p), was defined as:

Ssa,b,p) =1 - Tsc(l —a,1-b,p)

In the same paper it was shown that the use of term sets determines the granularity
with which the input certainty is described. This granularity limits the ability to differ-
entiate between two similar calculi; the numerical results obtained by using two calculi
whose underlying T-norms are very close in the T-norm space will fall within the same
granule in a given term set. Therefore, only a finite, small subset of the infinite number
of calculi that can be generated from the parametrized T-norm family produces notably
different results. The number of calculi to be considered is a function of the vncertainty
granularity.

This result was confirmed by an experiment [1] where eleven different calculi of
uncertainty, represented by their corresponding T-norms, were analyzed. To generate the
eleven T-norms, the parameter p in Schweizer’s family was given the following values:

-1,-08,-0.5,-0.3,0,0.5,1,2,5,8,00

The experiment showed that five equivalence classes were needed to represent (or
reasonably approximate) any T-norm, when term sets with at most thirteen elements were
used. The corresponding five uncertainty calculi were defined by the common negation
operator N(a)= 1-a and the DeMorgan pair (T’s.(a, b, p), Ss.(a,b,p)) for the following
values of p:
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p=-1 Ti(a,b) =maz(0,a+b-1)
S1(a,b) = min(l,a + b)

p=—05 Ts.(a,b,—0.5) = maz(0,a®s + %5 — 1)’

Sse(a,b,—0.5) = 1 - maz(0, - 0)®5 + (1 - 5)*5 ~ 1)’

p—0 Ts(a,b) = ab
Sxa,b)=a+b—abd

p=1  Tsda,b,1)=maz0,a=' +b' = )"

Sso(a,0,1)=1=maz©,(1 —a)' +(1 — b~ = 1)~

p— o Ti(a,b) = min(a,b)
S3(a, b) = maz(a,b)

RUM’s inference layer provides the user with a selection of the five T-norm based
calculi described above. They are referred to as Ty, T s, 12, T2 5, T3, respectively.

Operations in a T-norm Based Calculus

For each calculus, four operations are defined in RUM’s Rule System: premise evaluation,
conclusion detachment, conclusion aggregation, and source consensus. Each operation
in a calculus can be completely defined by a Triangular norm TY.,.), and a negation
operator N(.), just as in classical logic any boolean expression can be rewritien in terms
of an intersection and complementation operator. A formal justifications for the following
definitions can be found in References 3], [5]. The four operations are defined as follows:

Premise evaluation: The premise evaluation operation determines the degree to which
all the clauses in the rule premise have been satisfied by the matching wffs. Let b; and
B; indicate the lower and upper bounds of the certainty of condition i in the premise of
a given rule. Then the premise certainty range [b,B] is defined as:

[bvB] = [T(blstV'-,bm)aT(BlyBZ"--,Bm)]

Conclusion Detachment: The conclusion detachment operation indicates the certainty
with which the conclusion can be asserted, given the strength and appropriateness of
the rule. Let s and n be the lower bounds of the degree of sufficiency and necessity,
respectively, of the given rule, and let [b,B] be the computed premise certainty range.
Then the range [c,C), indicating the lower and upper bound for the certainty of the
conclusion inferred by such rule, is defined as:

[c,Cl= [T(s,b),S(N(n), B)]
(T(s,0), N(T(n, N(B)))]
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The degrees of sufficiency and necessity respectively indicate the amount of certainty
with which the rule premise implies its conclusion and vice versa. The sufficiency degree
is used with modus ponens to provide a lower bound of the conclusion. The necessity
degree is used with modus tollens to obtain a lower bound for the complement of the
conclusion (which can be transformed into an upper bound for the conclusion itself).

Conclusion aggregation: The conclusion aggregation operation determines the con-
solidated degree to which the conclusion is believed if supported by more than one path
in the rule deduction graph, i.e., by more than one rule instance. Each group of deduc-
tive paths can have a distinct conclusion aggregation operator associated with it. Let
the ranges [c;, C;] indicate the certainty lower and upper bounds of the same conclusion
inferred by m rules instances belonging to the same group. Then, for each group of
deductive paths, the range [d,D] of the aggregated conclusion is defined as:

(d,D]1= [S(c1,e2,.--,¢m), S(C1,C25...,Cm))
[N(T(N(c1), N(c2),. .., N(em)), T(N(C1), N(C2), ..., N(Cru)))]

Source Consensus: The source consensus operation reflects the fusion of the certainty
measures of the same evidence A provided by different sources. The evidence can be
an observed fact, or a deduced fact. In the former case, the fusion occurs before the
evidence is used as an input in the deduction process. In the latter case, the fusion occurs
after the evidence has been aggregated by each group of deductive paths. The source
consensus operation reduces the ignorance about the certainty of A, by producing an
interval that is always smaller or equal to the smallest interval provided by any of the
information source. If there is an inconsistency among some of the sources, the resulting
certainty intervals will be disjoint, thus introducing a conflict in the aggregated result.
Let [L1(A), U1(A)],[L2(A), U2(A)],. .. ,[La(A), Un(A)] be the certainty lower and upper
bounds of the same conclusion provided by n different sources of information. Then,
the result [ L;,:(A), Usoe(A)], obtained from fusing all the assertions about A, is given by
taking the intersection of the certainty intervals:

[Ltot(A), Utor(M)] = {Mazi(Li(A)), Min,(U.(A))]
[S3(Li(A)), T3(Ui(A4))]

2.2.3 Control: Calculus selection, Belief Revision, Context Mechanism

Calculi Selection

As it was discussed in the previous section, RUM’s Rule System uses a set of five T-
norm based calculi. The calculus used by each rule instance is inherited from its rule
subclass (the rule before the instantiation). The calculus can be modified through KEE’s
user interface or programmatically (i.e., by an active value). Class inheritance can also
be used to modify the degree of sufficiency and necessity of all the rule members of the
same class.

The calculi selection consists of two assignments. The first assignment indicates
the T-norm with which the premise evaluation and the conclusion detachment will be
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computed. Such an assignment is made for each rule, and, through inheritance, is passed
to all rule instances derived from the same rule.

The second assignment indicates the T-conorm (represented by its dual T-norm) with
which the conclusion aggregation will be computed. This assignment is made for each
subset of rule instances generated from different rules and asserting the same conclusion.

Rationale for Calculi Selection

The T-norm characteristics will determine the selection choices. For the first assign-
ment, the T-nomm assigned to each rule for the premise evaluation and the conclusion
detachment will be a function of the decision maker’s attitude toward risk. The ordering
of the T-norms, which is identical to the ordering of parameter p in the Schweizer & Sklar
family of T-norms, reflects the ordering from a conservative attitude (p=~lorT}) to a
non-conservative one (p — oo or 73). From the definition of the calculi operations, we
can see that T will generate the smallest premise evaluation and the weakest conclusion
detachment (i.e., the widest uncertainty interval attached to the rule’s conclusion). T-
norms generated by larger values of p will exhibit less drastic behaviors and will produce
nested intervals with their detachment operations. T3 will generate the largest premise
evaluation and the strongest conclusion detachment (the smallest certainty interval).

For the second assignment, the T-norm assigned to the subsets of rule instances
(derived from different rules and asserting the same conclusion) will be a function of
the lack or presence of positive/negative correlation among the rules in each subset.
The ordering of the T-norms reflects the transition from the case of extreme negative
correlation, i.e., mutual exclusiveness (7)), through the case of uncorrelaton (73), to the
case of extreme positive correlation, i.e., subsumption (T3).

Currently, all calculi assignments are explicitly made and modified through the user
interface, to exercise the implemented accessing functions. In the next development phase
of RUM control layer, the calculi assignments will be made by a set of selection rules
expressing the meta-knowledge about the context. These rules will select the T-norms
that better reflect the knowledge engineer’s desired attitude toward risk and the perceived
amount of correlation among the rules used in such a context.

Uncertain-Belief Revision

A daemon-based implementation of the belief revision of the uncertain information is
available in the control layer of RUM'’s Rule System. For any conclusion made by a
rule, the belief revision mechanism monitors the changes in the cerntainty measures of
the wffs that constitute the conclusion’s support or the changes in the calculus used to
compute the conclusion certainty measure. Validity flags are inexpensively propagated
through the rule deduction graph. Five types of flag values are used:

Good Guarantees the validity of the cached certainty measure detached by the rule in-
stance and aggregated into the associated wff.
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Bad (level i) Indicates that the cached certainty measure detached by the rule instance is
no longer reliable, since the support of some of the wif’s in th~ prem:se of this rule
instance has changed. The ith level indicates the correct order of recomputation.

Inconsistent Indicates that the cached certainty measure associated with the wif is con-
flicting. The inconsistency can be removed by executing a locally de: . ed procedure
(differential diagnosis type of experiment, recency of information, split in possible
words with subsets of the original sources, etc.)

Not Apr'icable Indicates that the context of the rule instance is no longer active and the
rule instance contribution to the aggregated certainty measure of the wif should be
ignored.

Ignorant Indicates that the cached certainty measure detached by the rule instanc= is too
vague to be useful. The default behavior is to ignore the rule instar.ce contribution
to the aggregated certainty measure of the wff. Locally defined procedure could
be used to remove the ignorance if so specified.
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An Example of Using the Uncertain-Belief Revision

To provide the reader with a better understanding of the uncertain-belief revision, we
will make the following graphical mnalogy: the wffs of the reasoning system correspond
to nodes in an acyclic deductive g aph; the inference rules in the system correspond to
the inference gates that connect the nodes in the graph. There are two types of wffs: e
observations or assumptions, corresponding to the nodes at the frontier of the graph, and
the inferred conclusions, corresponding to the intermediate nodes in the graph. The first
type of node does not have any logical support (its evidence source is the observer or the
assumption’s maker). The second type of node has a logical support represented by the
set of rule instances that made that inference. For this second type, the logical support
is the evidence source. Figure 2.3 illustrates a a portion of an acyclic deductive graph,
in which seven rule instances are depicted as gates.

In Figure 2.3, C and H (depicted as control lines on the side of a gate) represent two
context descriptions that enable/disable the activation of rules R1, R2, R4. The other
two rules (R3 and RS) are always potentially active (regardless of context). The figure
shows the case in which fact D has just changed. This change causes the propagation of
a bad-validity flag that affects the conclusion of rules R2 and RS (J and K, respectively).
The numbers attached to the bad flag indicate the order in which a recomputation of the
certainty measures must be performed. Fact H has also changed and its new value no
longer satisfies the context description of rule R4, thus causing the not-applicable flag to
be attached to the detachment of R4. Fact L has also changed, affecting the validity of
Rule R6’s detachment.

Reasoning under Pressure

The belief revision system offers both backward and forward processing. Running in
depth-first, backward mode, RUM recomputes the certainty measures of the modified wffs
that are required to answer a given query. This mode (called reasoning under pressure)
is used when the system or the user decide that they are dealing with time-critical tasks.
In the case illustrated in the previous figure, if the value of wff K were requested, the
systems would perform the following sequence of tasks: fetch the new certainty values of
D (lower and upper bounds); recompute the detachment of rule R2; use T-conorm S, to
evaluate the OR node (with R1 and R2's detachments); ignore R4’s detachment, treating
R3’s detachment as the only input to the OR node associated with T-conom S3; fuse
the two OR nodes, defining the new certainty values of wff J; recompute the detachment
of rule RS; use T-conorm S; to evaluate the OR node (with RS and R7’s detachments),
defining the new certainty values of wff K.

When time is not critical, the system can use a breadth-first, forward mode process-
ing to recompute the certainty measures of the modified wffs, attempting to restore the
integrity of the rule deduction graph. In the case illustrated in the previous figure, this
implies an update of fact L and rule R6 (both of which were not considered by the back-
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ward mode, since they did not play any role in determining the value of the proposed
query, e.g. wff K).

The structure of the graph can also change, as new rule instances are created or
deleted, due to changes in the facts’ values, (as opposite to facts’ certainty values). The
deduction graph is updated and bad flags are propagated throughout the network.

Rule Firing Control via Context Activation®

A user-definable threshold can be attached to each rule context, either by local definition
or by inheritance from a rule class. A rule context is defined as a conjunction of conditions
that must be satisfied before the rule can be considered for premise evaluation. Each
condition is described by a predicate on object-level wffs (facts in problem domain),
or control-level wffs (markers asserted by meta-rules). The semantics of a context C
attached to an inference rule (establishing the weak logical equivalence between A and
B) is given by the following expression:

C—-(ASB)

where s and n indicate the lower bounds of the degree of sufficiency and necessity
that the rule provides; — represents the strong material implication; «— denotes the weak
logical equivalence.

The context mechanism provides the following features:

e By activating/deactivating subsets of the KB, it limits the number of rules that
will be concidered relevant at any given time, thus increasing the overall system
efficiency.

¢ By only considering the rules relevant to a given situation, it allows the knowledge
engineer to effectively use the necessary conditions in the rule’s premise. It is
now possible to distinguish between the failure of a necessary test (described in
the premise) and the failure of the rule’s applicability (traditionally described by
other clauses in the same premise and now explicitly represented in the context).

¢ By using predicates on the control-level wffs, it provides the required programma-
bility for defining flexible control strategies, such as causing sequences of rules to
be executed, firing default rules, ordering and handling time-dependent information,
etc.

¢ By using hierarchical contexts, it can be used as an organizing principle for the
knowledge acquisition task.

2.3 The Object Based Simulation Environment

The second block of the MS/MT architecture is the simulation environment. This envi-
ronment is centered around LOTTA, an object-oriented symbolic battle management sim-
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ulator that maintains time-varying situations in a multi-player antagonistic game [BA88].
The development environment based on LOTTA constitutes a testbed for validating new
techniques in reasoning with uncertainty and for performing information fusion func-
tions [SBBG86). The development environment is composed of four basic modules: the
window manager, the annotation system, the symbolic simulator (LOTTA), and the Inter-
face (KEELA) . The simulation environment was used to program both naval and aerial
scenarios, in which the information fusion and situation assessment tasks were performed.

2.3.1 The Information Fusion/Situation Assessment Problem

The Information Fusion (IF)/Situation Assessment (SA) requires a variety of tasks in
which uncertainty pervades both the input data and the knowledge bases. Beside its
intrinsic uncertainty, usually the information dealt in each task is also incomplete, time-
varying, and, sometimes, erroneous. Thus, the SA problem represents a strong challenge
for most automated reasoning systems, since it requires an integration of the uncertainty
management with a truth maintenance system (belief revision system) to maintain the
integrity of the inference base (or of its relevant subset). The SA problem also requires
the reasoning system to detect useless and contradicting information, rejecting the former
and resolving the latter.

There is no uniformly agreed definition of what a situation assessment prcblem entails.
The following definitions have been compiled and summarized from a variety of sources
[Cla81], [LGFF84] to succinctly describe the SA problem. Given a platform (aircraft,
ship, tank) in a potentially hostile environment, the process of performing Situation
Assessment consists of the following tasks:

1. Sensor data must be collected from various sources and described as reports.

2. Time-stamped sensor reports must be consolidated into tracks (each track is the
trace of an object followed by a given sensor).

3. Tracks associated to the same object must be fused into a platform.
4. The detected plarform must be classified and identified (by class and type).

5. Node organization (formation of the identified platforms), use of special equipment,
and maneuvering must be recognized.

6. Using the knowledge of the opponent’s doctrines and rules of engagement, the
recognized formation and observed use of special equipment must be explained by
a probable intent, which is then translated into a threat assessment (retrospective
SA).

7. This analysis is then projected into the future to evaluate plausible plans and to
determine likely interesting developments of the current situation (prospective SA).
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The first four tasks (1-4) define what is generally known as Information Fusion and
(Qow-level) Situation Assessment problems. These tasks determine the scope of the first
SA experiment. The last four tasks (4-7) define the Situation Assessment problem and
are illustrated in the second SA experiment.

2.3.2 Example of RUM rules

The RUM knowledge base (KB) used in MS/MT application is composed of approxi-
mately forty rules, each of which can be instantiated by new sensor reports, new tracks,
or new platforms. A representative sample of such a KB is provided by the following
two rules.

English Version of Rule-500 (identifying submarines):

Assuming that a radar was used to generate a sensor report (that with other reports
generated by the same sensor has been attached to a track associated with a platform), if
the first time that the plagform was detected (in the track’s first report), the platform was
located at a distance of at most twenty miles from our radar (i.e., it was a close-distance

radar pop-up) then it is most likely that the platform is a submarine. Otherwise, there is
a small chance that it is not a submarine.

RUM'’s Version of the same rule:

(add-template ’sub.pos.id-close.pop.up-500 ; Name
‘msmt ; KB
" {{u-lessp (get.uncertain.value (get.value ?track ‘first.report) ’range
(fuzz 20))) ; Premise-list
’ (({get.value ?track ’‘platform) class.name submarine s2.rules))
; Consequence-list
r ({?2track first..eport)) ; List of wffs in premise
’ {?track) ; List of units in premise

’ ((is-in-class? (get.value ?report ’‘track) ‘source '’ (radar lot:ta)))
; Context

’ (most.likely small.chance) ; Sufficiency and necessity
't3 ; Aggregation T-norm
’ (submarine track.templates)) . Rule class & instantiation templ.

English Version of Rule-550 (identifying submarines):
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Assuming that a sonar was used to generate @ sensor report (that with other reports
generated by the same sensor has been attached to a track associated with a platform),
if the detected platform has a low noise emission, and is located at a depth of at least
twenty meters, then it is extremely likely that it is a submarine. Otherwise, it may not be
a submarine. '

RUM'’'s Version of the same rule:

(add-template ‘sub.pos.id-sonar-550 ; Name

‘msmt ; KB
’ ((is-value? ?report ‘noise~emissions ‘low) ; Premise-list
(u-lessp {(get.uncertain.value ?report ‘elevation) (fuzz -

203))

(((get.platform ?2report) class.name submarine s2.rules)) ; Consequence
list

’ {(?report elevation)) ; List of wffs in premise

’ (?report) ; List of units in premise

’ ((is=-in-class? (get.value ?report ’track} ’source ' (sonar lotta)))
; Context

' {extremely.likely it.may) ; Sufficiency and necessity
‘t3 ; Aggregation T-norm
* (submarine report.templates)) ; Rule class & instantiation templ.

Notes on the Calculi Selection for Rule 500 and 550

The T-norm used to detach the conclusion of rule 500 and 550 is T3. This is due to the
fact that we want to obtain the smallest certainty interval associated with the detached
conclusion. The T-conorm used to aggregate the certainties of the detachments of both
rules is 52. This assignment indicates a lack of correlation among the two rules, which
is substantiated by the fact that independent sources of information (radar and sonar) are
used in the context of the two rules.

2.4 Experiments in Situation Assessment

2.4.1 Information Fusion and Platform Typing in a Naval Scenario

The first experiment dealt with a naval scenario and has been reported in [4], [BWS8S).
The experiment was a modified version of the naval situation assessment scenario used by
Naval Ocean System Command to test STAMMER [BM79] and STAMMER2 (MMK79],
{Fer81). In this mcdified scenario, a CGN-36 missile cruiser operating a passive sensor
and an SPS-10 surface radar faces two unknown platforms. One of the two platforms




(selected from a large set of ships) is using an active sensor (navigational radar), while
the second platform is not using any active sensor.

The cruiser’s task was to track, correlate, and classify each detected object. The
passive and active sensors were tumed on, generating sensor reports which were translated
through the KEELA interface into observed wffs. The information retumed by the passive
sensor (GPS-3) contained the heading, position, range, speed, and time at which the
platform was detected. This information was attached to a track (TRACK-10), which
maintained subsequent sensor reports generated by the same sensor and associated with
the same platform (PLATFORM-439). A second track (TRACK-3) for the platform was
similarly generated by the SPS-10 radar. A third track (TRACK-7), also generated by
the cruiser's active sensor, was generated for the second platform. Figure 2.4 illustrates
a portion of the knowledge base where the report, track, and platform information is
stored. In the same figure it is possible to observe the rule instantiation (by track) of the
two rules (500 and 550) described in Sccuon 2.3.2.
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Figure 2.4: Subgraph of the MSMT Knowledge Base

The query posed to RUM was to deduce the class value of the first platform from the
tracks information. Three values for the platform class were considered by the system
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and qualified by their corresponding certainty bounds: Merchant {0.69 1], Submarine (0
0.2], and Fishing Boat [0 0.02], Merchant being best because of the ranking of certainty
measures. The lower bound of 0.69 indicates a large amount of positive (confirming)
evidence. The upper bound of 1.0 indicates the absence of any negative (refuting) ev-
idence. The class Submarine obtained no confimning evidence and a large amount of
negative evidence. The refuting evidence was provided by a rule which from the failure
to observe a close-distance radar pop-up determined that there was only a small chance
for the platform to be a submarine. The class Fishing Boat also had no confirming ev-
idence and an overwhelming amount of negative evidence. This refuting evidence was
due to the fact that the platform was too far from the fishing areas, too big for a fishing
boat, and was using a radar (rules 340, 320, and 330). This information can be obtained
from Figure 2.2, by observing the logical support for each of the three value assignments
considered for the wff [Platform-439 Class-name), and from Figure 2.5, by observing the
dominant rules for each value. Each rule instance, fired to infer a value of the wff, has a
cached certainty value (lower and upper bounds) and an associated validity flag. Thus,
Figure 2.5 provides the information which was schematically described by the acyclic
graph depicted in Figure 2.3.

2.4.2 Tactical Aerial Situation Assessment

The second experiment dealt with tactical aerial situation assessment. The purpose of the
experiment was to provide a fighter pilot with the intent evaluation of various potential
threats. The simulator generated a variety of scenarios in which up to three aircraft
exhibited sufficiently interesting behavior (flight paths intercepting/converging toward
ownship, specific sensor use, etc.) to justify a closer analysis. RUM deduced the aircraft’s
intent from a variety of factors. First the aircraft’s class and type was identified by a
set of rules based on behavioral information. This inference determined characteristics
such as a likely weapon configuration, a likely sensor configuration and an estimate of
the Launch Acceptability Region (LAR). Intent was then determined by a second set
of RUM rules, based on aspect angle, change in aspect angle, velocity, acceleration,
radar mode, ownship detectability template (ODT), shortest time to threat’s LAR, and
formation. In this experiment, the reasoning system correctly evaluated various intent
values chosen among engage-now, engage-later, influence, evade, and non-reactive. Each
plausible intent value was qualified by an uncertainty measure and, from the induced
partial ordering, the most likely intent was returned.

2.5 Remarks and Conclusions

RUM'’s layered architecture properly addresses the requirements imposed by the SA
problem. The representation layer captures the uncentain information about the wffs
(ower and upper bounds) used by the calculi in the inference layer to determinc the
uncentainty of the conclusions. The representation layer also captures the uncertain meta-
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information (evidence source or logical support, measures of ignorance and conflict) used
by the belief revision system and other mechanisms in the control layer.

The inference layer provides the knowledge engineer with a rich selection of well-
understood calculi to properly represent existing correlations among rules. Numerical
computations performed in this layer are efficiently implemented by using a four param-
eter representation for the uncertainty bounds, supported by a set of closed form formulae
that implement the truth functional uncertainty calculi [1].

The control layer provides the explicit selection and modification of uncertainty cal-
culi. Tts context activation mechanism allows the reasoning system to focus on the rele-
vant subsets of the changing inference base (the acyclic deductive graph). The uncertain-
belief revision maintains the integrity of those relevant subsets, reflecting the changes of
the information. RUM’s development environment provides the traceability of wffs and
rules that is required for proper KB development and refinment.

The MS/MT experiment described in this paper has been used to illustrate RUM’s
capabilities in an IF/SA application. It is a complete experiment, but certainly not a
complex one. A more strenuous and realistic validation of RUM is in progress: currently
RUM is successfully being used as the reasoning system of the Situation Assessment
module in DARPA's Pilot’s Associate Program [SBBG86]. In this application, the six
tasks (described in Section 2.3.1) that comprise the retrospective SA problem are ad-
dressed by RUM in Scenarios involving up to twenty platforms. This application is also
used to derive some of the real-time requirements that will represent the focus of RUM’s
future development.
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Abstract

The development of reasoning systems addressing situation assessment problems
presents a major difficulty common to the development of all expert systems: testing
and validating the knowledge base and inference techniques. To solve this problem,
and to address a broader class of problems, referred to as dynamic classification
problems, we have implemented a software architecture capable of generating, inter-
preting, and resolving complex time-varying scenarios. The test-bed architecture is
composed of two parts: a simulation environment, LOTTA, and a reasoning system,
RUM.

The simulation environment is composed of four basic modules: the window
subsystem, a window based user interface for displaying maps; the annotation sub-
system, an intelligent database for displaying time varying features; LOTTA, the
simulator; and a set of tools for interfacing to a reasoning system. LOTTA is a sym-
bolic simulator implemented in an object-oriented language (Symbolics Flavors).
LOTTA maintains time varying situations in a multiple player antagonistic game
where players assess situations and make decisions in light of uncertain and incom-
plete data. LOTTA has no reasoning capabilities; these are provided by extemnal
reasoning modules, easily interfaced 1o the LOTTA data structures.

RUM (5], a development environment for reasoning with uncertainty, and RUM-
runner, RUM’s run-time counterpart, are the reasoning systems used in the test-bed
architecture. Both RUM and RUMrunner are based on the theory of plausible reason-
ing [2], developed at GE CR&D over the last three years. RUM's main function is
10 build rule-based reasoning systems following the rapid prototyping methodology.
Following the testing, and verification of the application using RUM, the knowledge
base generated by RUM is then automatically translated and compiied into compact
data structures. RUMrunner reasons opportunistically with these data structures to
achieve the run-time performance required by most real-time applications.

This software architecture has been used to solve two examples of situation
assessment problems. In a naval scenario, it has been tested in information fusion
tasks, such as track correlation and platform typing. In an aerial scenaro, it has
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been used to determine the threat class, type, intent, opportunities, and capabilities
of targets.

3.1 Dynamic Classification Problems

The classification problem consists of recognizing a situation from a collection of data and
selecting the best action in accordance with some objectives. Examples of classification
include diagnosing faulty components, modeling users in terms of goals and beliefs,
selecting comnonents from a catalog of items in order to meet certain requirements,
performing theorstical analysis, and developing skeletal plans. The classification problem
has a recurrent solution structure, as was observed by Clancey [Cla84]. A collection
of data, generated from several sources, is interpreted as a predefined pattern. The
recognized pattern is mapped into a set of possible solutions, from which one is selected
as the most appropriate for the given case. This process is considered a static classification
problem, since the data are assumed to be invariant over time or at least invariant over
the time required to obtain the solution.

A more challenging classification problem is the one in which the environment from
which data are collected changes at a rate comparable with the time required to obtain a
refined solution. Examples of such dynamic classification problems are real-time situation
assessment (e.g., air traffic control), real-time process diagnosis (e.g., airbome aircraft
engine diagnosis), real-time planning, and resi-time catilog selection (e.g., investment
selection during market fluctuations). The characteristic structure of this class of dynamic
classification problems is illustrated in Figy re 3.1.

Situation assessment (SA) [SBBG86], as nart of the more extensive battlefiel 1 man-
agement problem, is a prototypical case of the dynamic :lassification problern. The
retrospective component of situation assessment consists of analv.ing and associating
observed events to identify and understand those which are relevant. The prospective
component consists of projecting the relevant events and assessing their future impact.
The correct assessment of current and future impacts of a given situation requires con-
tinuous classification in a dynamic environent.

The development of reasoning systems addressing dynamic classification problems
prescnts another difficulty: testing and validating the knowledge base and inference
techniques (BB85]. For the static classification problems, such as troubleshooting, this is
a relatively simple task: the reduced complexity of the problem domain allows the expert
easy generation of test cases. Final verification can be obtained by operating the expert
system in the field, solving actual problems. For the battlefield management case, the
complexity of the problem domain does not allow the expert to create test cases manually
and no actual cases are gen-rally available for testing the expert system in the field.

To solve this problem, anc to address a broad class of dynamic classification problems,
we have implemented a software arcnitectire capable o gene-.ing, interpreting, and
resolving complex time-varying scenarios.
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This paper describes the test-bed architecture (Section 3.2) and the simulation en-
vironment (Section 3.3), then proceeds to discuss the reasoning system (Section 3.4),
illustrates two examples of tactical situation assessment implemented in the proposed
test-bed architecture (Section 3.5), and concludes with an illustrated description of the
methodology used *o test and validate the knowledge bases (Section 3.6).

3.2 Test-bed Ar.chitecture

The software architecture is composed of two major modules: a simulation environment,
capable of maintaining the dynamic states of numerous simulated objects; and a reasoning
system, capable of dealing with the uncertain, incomplete, and time-varying information.
This software architecture is illustrated in Figure 3.2.

3.3 Simulation Environment

Large scale simulators have been traditionally implemented in oversized, monolithic For-
tran programs. Usually, these simulators perform number-crunching computations to
determine the numerical value of every available simulation parameter. However, it has
been noticed by McArthur [MKN86] that these traditional simulators are too restrictive.
They do not provide the selective richness and flexibility required to exercise and validatc
the broad gamut of reasoning tasks required to solve dynamic classification problems.
Four major shortcomings have been identified by McArthur [MKN86]: the inability to
verify the completeness and accuracy of the models; the inability to modify models and
construct alternative models; the incomprehensibility of the results; and the long required
run times. This view lead the RAND group to the development of ROSS [MKN86] as
the underlying object-oriented simulation language used to implement a variety of appli-
cations, such as SWIRL {KMN&82] and TWIRL (KEGN86]. Recently, an object-oriented
based simulator has been used to provide enough complexity and uncertainty in the gen-
erated problem space to create challenging situations for a mobile robot planning system
[F1187].

We have adopted the object-oriented methodology to implement LOTTA, a symbolic
simulator, which, upon demand, can provide numerical information. Due to evolving re-
quirements, LOTTA has undergone a large number of iterative refinements, as described
by the rapid prototyping paradigm {Pre87]. As new scenarios were generated by LOTTA,
new objects had to be defined, new features had to be displayed. and more accurate sen-
sor/weapon iodels had to be included. The object-oriented language used to implement
LOTTA has been essential in providing the modeler with the requisite flexibility.

The simulation environment is composed of four basic modules: the window subsys-
tem, a window based user interface for displaying maps; the annotation subsystem, an
intelligent database for displaying time varying features; LOTTA, the simulator: and a set
of i00ls for interfacing to a reasoning system.
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3.3.1 Window Subsystem

The window subsystem is a window based user interface for displaying maps. It controls
the menu-driven interaction of the human player with LOTTA and handles multiple
windows per player. By interacting with the window subsystem, each player can create,
inspect, or delete objects; set up, execute, display orders for each object; zoom in and out
of the display map; create or kill new windows; create, inspect, modify, rename, delete,
or display features; and automatically run test cases, among other things.

3.3.2 Annotation Subsystem

The annotation subsystem is an intelligent database for LOTTA. It is composed of a
feature extraction system and a feature watcher. The feature extraction system allows
both simple and complex time-varying features to be calculated and store?! along with the
dependencies and recalculate function which allow the feature to be maintained over time.
Every feature, whether internally or externally computed, has multiple views (graphical
representations for use in decision-making and explanation tasks). The feature wa‘cher
maintains the dependency directed information that characterizes the dynamic support of
the features and monitors the support for possible changes. The watcher will then guide
the “lazy” recomputation of those features whosc support has changed since the feature’s
last computation.

Some of the features that can be created for objects are: parameters (e.g., size,
maximum speed), ranges (e.g., weapon or movement), movement orders (e.g., path,
velocity, altitude profiles), sensor orders (e.g., types and modes), piece data (e.g., altitude,
speed, heading), image data (e.g., bearing, range, altitude, speed, heading), detection (e.g.,
sensor ranges and probability of detection), and Launch Acceptability Region (LAR).
Some of the views available for these feature types include splines, vector fields, numeric
or textual annotations, and field contours.

3.3.3 Simulator

The core of the simulation environment is the symbolic, object-oriented simulator. This
simulator maintains time-varying situations in a multi-player antagonistic game where
players must make decisions in light of uncertain and incomplete data. The structure
of this simulator is similar to that of multiple player antagonistic games in which each
player has only partial information.! Note that a separate simulator exists for each player,
preventing unauthorized information usage, but necessitating a robust communications
scheme.

The simulator maintains a world model, composed of static and dynamic elements
whose states change as a result of the decisions and actions made by each player. The

'Each player's knowledge about the opponent’s assets is obtained by the simulated use of its sensors.
Under the default assumption, each player has perfect information about its own pieces. This assumption
can be easily removed by forcing the player to rely only on information acquired through its sensors.
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static knowledge includes inalterable a prion information such as terrain topology, terrain
type, locations of fixed obstacles (impassable for navigational purposes), organizational
structures and sizes of the teams of agents which will play an active role in the simulation,
etc. The dynamic knowledge describes time-varying information such as weather (which
can be partially predicted, but whose behavior cannot be influenced), removable obstacles
(such as bridges and land mines), as well as friendly and unfriendly objects that move,
observe, and act in this micro-world according to their associated orders.

Following the design philosophy of structured programming, LOTTA was built in a
modular fashion. The playing pieces, the players, and the simulation control flow are all
implemented as distinct modules.

Playing Pieces

In LOTTA all the elements of the simulation are defined as Flavors instances, (i.e., objects
with multiple inheritance). Message passing is the uniform communication paradigm used
for sending commands and modifying the internal states of the objects. In a traditional
(not object-oriented) structured programming paradigm, the approach suggests a separate
data entity for each playing piece on the board. A set of subroutines would be available
for each class, but as the number of subroutines and classes increase, naming problems
for different but similar actions arise. For example, planes, submarines and trucks all may
move (i.e., change their location on the map), but their movements are constrained by
different media, conditions, capabilities, and obstacles. A plane may fly through the air
or taxi down a runway, a submarine may move underwater or on the surface, and a truck
may move along paved roads, all assuming no collisions, favorable weather conditions,
etc.

By defining playing pieces as objects with multiple inheritance, the complexity of the
above situation can be significantly decreased. By providing each piece with movement
capabilites described by a mixin, the common need to change locations on the map is
shared by all the pieces. More specific movement capabilities can then be defined for
each class. For instance, the underwater capabilities of a submarine would be described
by a submarine-movement-mixin that specializes the more generic ship-movement-mixin,
which in tum is built upon the most basic movement-mixin flavor.

In LOTTA’s implementation, the family of movement flavors handles more than just
coordinate changes. Other operations, such as fuel consumption and collision avoidance,
must be included under the broad heading of movement. For instance, for those pieces
whose movements require the expenditure of fuel, a refueling mechanism must also be
provided. The accounting of fuel has been written as yet another mixin and is used in
conjunction with the movement-mixin flavor.

Each playing piece (i.e., each dynamic element in the simulation), is built from many
simpl.r component flavors, from which it inherits various methods for processing incom-
ing messages regarding weapons, sensors, damage, repairs, movements, transportation,
ctc. By combining these flavors with different parameters, many different types of playing
pieces have been created.
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LOTTA’s Control Flow

The control flow of the simulation is obtained by creating a main loop (the simulation
cycle), which coordinates communication between the players. The simulation cycle is
divided into 8 phases: GAME-SYNC, SENSOR (PROBE & ECM), MOVEMENT, SEN-
SOR (PROBE & ECM), COMBAT (CIDS and OFFENSE), and MOVEMENT. Figure 3.3
illustrates these phases.

At the end of each movement phase, time is incremented by half of the real-time
value assigned to the cycle. The underlying assumption is that the time required for
weapon and sensor allocation is insignificant when compared with the time required to
move. By dividing the simulation phase into the above eight phases, each player may
assess the current state before committing to movement or weapon allocation decisions.

Each player can only give orders to its pieces (i.e., send mcssages) related to the
current phase in the cycle. When a player has finished giving orders for the current phase,
the orders are executed and it waits for the other players to complete their corresponding
phases. The control flow then advances to the next phase and the process is repcated.
Upon receiving an order, each piece attempts to execute it; in normal operation, these
orders are completed during this phase. Some orders (such as turning off a sensor) can
change the object’s internal state and maintain it until new orders arrive. Other orders
(such as move to a given location) are removed from the object’s order list as they are
executed. By the end of a phase, any number of actions may have been completed by
each playing piece. The decision maker may assign these orders programmatically, by
menu selection, or by direct editing of the data structures with a specially provided tool.

This protocol is necessary to maintain a breadth-first propagation of messages through
the network and prevent the results of the simulation from depending on the order in which
each piece received the messages. This synchronization is also essential in distributing
the decision making capabilities throughout clusters of pieces in the network.

3.3.4 Interface

Since the purpose of the LOTTA simulation system is to provide an environment for
testing expert systems, a mechanism for transferring the states of the simulated objects
to the reasoning system is required. In addition, this mechanism raust continually inform
the reasoning system of changes in the simulation. Additional flexibility is gained by
allowing the reasoning system the ability to send orders to pieces. In manual mode, the
player attaches commands to each piece which are examined and executed before the
next phase. By replacing one of the players with an inference system, it is possible to
test the inference system interactively.

Provisions could be made to allow a switch from the carrently implemented central-
ized decision maker, to a hierarchically distributed set of decision makers. This capability
will allow the representation of various levels of battlefield decision making (strategic,
operational, and tactical) in a more realistic manner. Such a capability would also provide
an excellent test-bed for evaluating distributed cooperative expert systems.
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Several interface modules were built using the core set of tools provided by LOTTA.
KEELA linked LOTTA to the KEE expert system tool by converting Flavor instances to
KEE units while KEE provided escapes to Lisp that could call the LOTTA tools directly.
The current system, LISA, is both more simple and more efficient as it links LOTTA
directly to the Tactical Aerial Situation Assessment System, described in Section 3.5.2.

3.4 Reasoning System

The simulation environment generates enough complex situations to exercise the require-
ments of several crucial tasks in battlefield management: information fusion, situation
assessment, option genc-ation and assessment, and decision evaluation and execution.
The reasoning capabilities are not embedded in the simulation, but are instead part of a
separate expert system that will aid or take the role of one the players. This architecture
allows us to generate a scenario, analyze -and assess it using inference techniques, make
a decision based on the situation assessment, execute the decision by issuing the proper
commands (messages) to the simulated objects, change the scenario, and continue the
loop.

In part, the separation of the reasoning system from the simulation environment has
been due to the need of addressing the increased complexity induced by the presence of
uncertainty in the dynamic classification problem. Uncertainty can be generated by the -
sources of information, information is always of limited reliability: images may be blurry
or partially occluded, text messages are ambiguous, and the information may be intention-
ally misleading (i.e., projection of false images). The problem solving knowledge used
in these domains is itself intrinsically uncertain: the interpretation of the numerous pat-
temns is based on subjective predicates, and the conclusions derived from the recognition
of given patterns are plausible but not categorical. The other reason for separating the
reasoning system from the simulation environment is the software engineering problem
associated with deriving a knowledge base for the reasoning system.

3.4.1 Al Software Engineering Problem

Usually, dynamic classification problems are characterized by an evolving set of require-
ments. As a result, their developiients undergo a large number of iterative refinements,
as cescribed by the rapid prototyping paradigm [Pre87]. The prototypes are developed
in rich and flexible environments in which various Al techniques are used. A knowledge
base is gene.ated, debugged, modified, and tested unul a “satisficing” solution {Sim81]
is obtained from this development phase. Then the prototype is ready for deployment:
it is ported to specific platforms and embedded into larger systems. The deployment’s
success, however, depends on the application performing in real-time. If the reasoning
system does not provide good timely information, then the application will not be able
to react fast enough to its environment. Even after deployment, the prototype cycle
must continue, because performance verification can only take place in a real-time en-

77




vironment. Thus, in order to meet the real-time requirements, the knowledge base and
algorithms may need additional prototyping.

Al software development is significantly different from the traditional approach. It
requires a prototyping cycle which spans two environments: development and target.
Usually, instead of having to transition software between these two environments, one
environment is eliminated. This approach, however, compromises either the flexibility
and richness needed for development, or the speed and efficiency requirements of execu-
tion. When both environments are used, a smooth transition of the application between
these two environments is essential. If the prototyping cycle cannot completely span the
two environments, the knowledge engineer has to re-implement portions of the software.

The reasoning tool described in this section provides a rich, user-friendly development
environment, a small and quick run-time system, and translation software to span the two
(see Figure 3.4).
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The Reasoning with Uncertainty Module (RUM) {S] [RUMS87] allows the knowledge
engineer to build complex applications in a user-friendly, error-tolerant, mouse-and-menu
environment. This environment also makes available many artificial intelligence tech-
niques, including reasoning with uncertainty. The RUMrunner tool provides a small, fast,
streamlined run-time system along with a virtually transparent transition path from the
development environment. These two tools allow the knowledge engineer to build the
prototype and deploy the final application in the most desirable environments.

34.2 RUM

RUM, a development environment for reasoning with uncertainty, and RUMrunner,
RUM’s run-time counterpart, are the reasoning systems used in the test-bed architec-
ture. RUM (5] is based on Bonissone’s theory of plausible reasoning (2], which provides
a representation of uncertain information, uncertainty calculi for inferencing, and selec-
tion of calculi for inference control. Uncertainty is represented in both facts and rules.
A fact represents the assignment of a value to a variable. A rule represents the deduction
of a new fact (conclusion) from a set of given facts (premises). Facts are qualified by a
degree of confirmation and a degree of refutation. Rules are discounted by sufficiency,
indicating the strength with which the premise implies the conclusion, and necessity,
indicating the degree to which a failed premise implies a negated conclusion. The uncer-
tainty present in this deductive process leads to considering several possible values for
the same variable. Each value assignment is qualified by different uncertainties, which
are combined with special calculi as described in 3] and [4].

RUM'’s rule-based system integrates both procedural and declarative knowledge in
its representation. The rule-based approach captures expertise gained from experience or
“rules of thumb”, thereby codifying heuristic knowledge without any underlying model.
In addition, natural expression of procedural knowledge can be smoothly integrated
through user-defined predicates in RUM rules. The integration of both techniques is
essential to solve situation assessment problems, which involve both heuristic and pro-
cedural knowledge.

The expressiveness of RUM is further enhanced by two other functionalities: the
context mechanism and belief revision. The context represents the set of preconditions
determining the rule’s applicability to a given situation. This mechanism provides an
efficient screening of the knowledge base by focusing the inference process on small
rule subsets. For instance, in SA, selected rules describe the behavior of friendly planes,
while others should only be applied to unfriendly or unidentified ones. The rule’s context
provides this filtering mechanism.

RUM'’s belief revision is essential to the dynamic aspect of the classification problem.
The belief revision mechanism detects changes in the input, keeps track of the dependency
of intermediate and final conclusions on these inputs, and maintains the validity of these
inferences. For any conclusion made by a rule, the mechanism monitors the changes in
the certainty measures that constitute the conclusion’s support. Validity flags are used
to reflect the state of the certainty. For example, a flag can indicate that the uncertainty
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measure is valid, unreliable (because of a change in the support), too ignorant to be
useful, or inconsistent with respect to the other evidence.

RUM offers both backward and forward processing. A lazy evaluation, running in
backward mode, recomputes the certainty measures of the minimal set of facts required
to ar swer a given query. This mode is used when the system or the user decide that they
are dealing with time-critical tasks. Breadth-first, forward mode processing recomputes
the certainty measures attempting to restore the integrity of the rule deduction graph.
This mode is used by the system when time is not critical.

These Al capabilities are used to develop a knowledge base, in conjunction with
RUM’s software engineering facilities, such as flexible editing, error checking, and de-
bugging. Some of these features, however, are no longer necessary once the development
cycle is complete. At run-time, applications do not create new knowledge (facts or rules),
as their basic structure have been determined at compile-time. The or!y run-time require-
ment is the ability to instantiate rules and facts from their pre-determined definitions. By
eliminating the development features which are unnecessary at run-time, a real-time Al
system can improve upon the algorithms and methodologies used in RUM.

3.4.3 RUMrunner

The objective of RUMrunner [Pfa87] is to provide a software tool that transforms the
customized knowledge buse generated by the development phase, into a fast and efficient
real-time application. RUMrunner provides both the functionality to reason about a broad
set of problems, and the speed required to properly use the results of the reasoning process.
Performance improvements are obtained by implementing all RUM’s functionalities with
leaner data structures, using Flavors [Sym86] (for the Symbolics version) or defstructs
(for the Sun version). Furthermore, RUMrunner no longer requires the use of the KEE
software, thus it can be run on any Symbolics or Sun workstation with much smaller
memory configurations, and without a KEE software license. RUMrunner’s inference
engine also provides a scheduling mechanism, a planning algorithm for reasoning under
time pressure, and other functionalities needed by real-time applications. RUMrunner
has four major qualities: it provides a meaningful subset of Al techniques, it runs fast, it
has the functionality of a real-time system, and it does not require the software engineer
to re-program the application in the target environment.

To increase speed, RUMrunner takes advantage of the fact that the application has
been completely developed and debugged. It provides a minimum of error checking
because the application is assumed either to be debugged already, or to be robust enough
to handle errors. RUMrunner’s time perfoimance in reasoning tasks is partially due to
the compilation of the knowledge base. As a result of this compilation, new or different
rules or units cannot be created in the knowledge base after the translation.

RUMrunner provides additional functionality for applications which must satisfy real-
time requirements. A RUMrunner application is able to carry out and control a set of
activities to rapidly respond to its environment. To meet these goals, the interface of
RUMrnunner with the application program is designed to be asynchronous, allowing the
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application to avoid unnecessary delays. In addition, the application is able to handle
externally or intenally driven interrupts. It is also able to prioritize tasks, by using an
agenda mechanism [Erm80], so that RUMrunner handles the most important ones first.
RUMrunner is performance-conscious by ensuring that tasks execute within a specified
amount of time. This is done through planning the execution of a single task as suggested
by Durfee and Lesser [DL87]. Finally, RUMrunner is implemented in Common LISP,
thus it can be ported to many-machines without requiring any proprietary software. None
of this additional functionality takes an unreasonable amount of time, and if not desired,
most of it can remain unused without a great time penalty. RUMrunner, is further
elaborated upon in [Pfa87].

3.5 Using the Test-bed Architecture

In section 2.4 we described two experiments used to exercise the test-bed architecture.
For the reader’s convenience, we provide a summary of them again.

3.5.1 Information Fusion and Platform Typing in a Naval Scenario

The first experiment dealt with a naval scenario and has been reported in {4]. The
experiment was a modified version of the naval situation assessment scenario used by
Naval Ocean System Command to test STAMMER [BM79) and STAMMER2 [MMK?73].
In this modified scenario, a CGN-36 missile cruiser operating a passive sensor and an
SPS-10 surface radar faces two unknown platforms. One of the two platforms (selected
from a large set of ships) is using an active sensor (navigational radar), while the second
platform is not using any active sensor.

The cruiser’s task was to track, correlate, and classify each detected object. The
passive and active sensors were turned on, generating sensor reports which were translated
through the KEELA interface into observed wffs. The information returned by the passive
sensor contained the heading, posiuon, range, speed, and time at which the platform was
detected. This information was attached to a track which maintained subsequent sensor
reports generated by the same sensor and associated with the same platform. A second
track for the platform was similarly generated by the SPS-10 radar. A third track, also
generated by the cruiser’s active sensor, was generated for the second plaform.

The query posed to RUM was to deduce the class of the first platform using the sensor
tracks. Using the RUM knowledge base and backward chainer, various attributes of the
platform were inferred or observed. The platform was correctly identified as a merchant
ship. based on the fact that the platformm was: reasonably close to a shipping lane;
traveling at a typical freighter speed (in the 9-14 miles/hour range); not mancuvering;
and not trying to dodge the cruiser’s surface radar. Three values for the platform classes
were considered by the system and qualified by their corresponding certainty bounds:
Merchant [0.69 1], Submarine [0 0.2], and Fishing Boat [0 0.02], Merchant being best
because of the ranking of certainty measures. The lower bound of 0.69 indicates a
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large amount of positive (confirming) evidence. The upper bound of 1.0 indicates the
absence of any negative (refuting) evidence. The class Submarine obtained no confirming
evidence and a large amount of negative evidence. The refuting evidence was provided
by a rule which from the failure to observe a close-distance radar pop-up determined that
there was only a small chance for the platform to be a submarine. The class Fishing
Boat also had no confirming evidence and an overwhelming amount of negative evidence.
This refuting evidence was due to the fact that the platform was too far from the fishing
areas, too big for a fishing boat, and was using a radar.

3.5.2 Tactical Aerial Situation Assessment

The second experiment dealt with tactical aenal situation assessment. The purpose of the
experiment was to provide a fighter pilot with the intent evaluation of various potential
threats. The simulator generated a variety of scenarios in which up to three aircraft
exhibited sufficiently interesting behavior (8ight paths intercepting/converging toward
ownship, specific sensor use, etc.) to justify a closer analysis. RUM deduced the aircraft’s
intent from a variety of factors. First the aircraft’s class and type was identified by a
set of rules based on behavioral information. This inference determined characteristics
such as a likely weapon configuration, a likely sensor configuration and an estimate of
the Launch Acceptability Region (LAR). Intent was then determined by a second set
of RUM rules, based on aspect angle, change in aspect angle, velocity, acceleration,
radar mode, ownship detectability template (ODT), shortest time to threat’s LAR, and
formation In this experiment. the reasoning system correctly evaluated various intent
values chosen among engage-now, engage-later, influence, evade, and non-reactive. Each
plausible intent value was qualified by an uncertainty measure and, from the induced
partial ordering, the most likely intent was returned.

3.6 Testing and Validating

Figure 3.4, in Section 3.4.1, illustrates the cascading tasks associated with the develop-
ment of a knowledge base application. The first three tasks (Requirement Re-definition,
KB Development, Requirement Verification) are performed in the development environ-
ment. The last two tasks (Product Engineering and Perfcrmance Verification) are per-
formed in the deployment system.

3.6.1 Functional Validation

The objective of this task is to assure that the knowledge base will meet the requirements
derived from the problem definition. We have used LOTTA to generate a set of scenarios
(sequence of events), which collectively exercise all the desired requirements. For in-
stance, these scenarios have allowed us to test the KB in light of unexpected events, such
as the appearance of a second platform in a one-on-one situation, or while reasoning with
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reduced information to reflect constraints on the use of the own-ship’s active sensors, etc.
By interactively modifying LOTTA’s scenarios, we have tested the reasoning system on
a class of scenarios with multiple variations, representing “‘what-if” type of situations.

In all these scenarios, LOTTA maintained ground truth (i.e., states and sets of orders
of all the players’ objects.) At the end of each sensor phase, LOTTA generated the
corresponding track file information representing the perceived truth of the simulated
world. These track files have then been used to test the rule set for consistency and
completeness. The same track files, stored as buffers, have later been applied as probing
input to exercise the run-time system.

RUM'’s conclusion’s explanation and traceability facilities have been used to identify
and analyze the dominant rules responsible for specific conclusions. By comparing the
conclusions with ground truth, the knowledge engineer has been able to detect and correct
eventual discrepancies. This corrective process was achieved by verifying the validity
of the input to the rule set (track file information), by examining the context of the
active rules, by analyzing the structure of the active rules (under or over constrained),
by calibrating the strength of the dominant rules (sufficiency and necessity), and by
modifying the sensitivity to uncertainty exhibited by the dominant rules (uncertainty
calculus selection).

3.6.2 Performance Validation

The obiective of this task is to guarantee that the software will meet the timing require-
ments imposed by the real-time constraints, while still maintaining the same functional
behavior.

As described in Section 3.4.3, this goal was achieved by a combination of efforts: the
translation of RUM's complex data structure into simpler, more efficient ones (to reduce
overhead); the compilation of the rule set into a modified RETE net [For82)] [Mir87]
(to avoid run-time search); the load-time estimation of each rule’s execution cost (to
determine, at run-time, the execution cost of any given deductive path); the run-time
planning mechanism for model selection (to determine the largest relevant rule subset
which could be executed within a given time-budget).

3.6.3 Example of Testing and Validating a KB

Using the Tactical Aerial Situation Assessment scenario discussed in Section 3.5.2, we
will illustrate how the test-bed architecture has been applied to this problem.

The onginal Tactical Aenial Situation Assessment Module was built with RUM on a
Symbolics running the KEE software. First the RUM system is loaded, and then the KEE
knowledge base is created. Units such as plane are created, designed to be instantiated
at run-time for each observed plane. RUMrules are created to infer the target value,
threat value, radar range of objects, and to identify the primary and sccondary mission
targets. These rules either describe attributes of single planes or define relationships
among various planes (e.g., formation). These rules are designed to be instantiated
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at run-ime along with the units, when particular planes are detected by the available
sensors. After the units and rules are created, the knowledge basc is debugged and fine-
tuned by modifying the certainties of values and rules, as well as the structure of the
rules. Scenarios are generated using LGTTA to provide realistic input data to the system.
As new requirements are added, new rules are created. Finally, after further testing and
debugging, the system is verified by the pilot experts.

At this point, when development is finally complete, the application is ready for
RUMrunner. The goal is now to ensure that the system meets the real-time requirements.

Using RUMrunner, the knowledge base is automatically translated into a binary file.
This point marks the end of the dependency on the KEE system. The RUMrunner system,
the application software, and the RUMrunner application knowledge base are loaded into
a (potentially) different Symbolics machine or Sun workstation. This process is illustrated
in Figure 3.5.

Alter testing the application (with the data generated from the LOTTA simulations) to
ensure its correct behavior, the real-time functionalities zre added to the system. A second
real-time binary file is created after RUMrunner manipulates the application knowledge
base to extract the real-time information. Finally, after loading the second file, the system
can be in run-time mode.

RUM Development System

KEE User
Interface

RUM RUM
WFF SYSTEM RULE SYSTEM

KEE Frame
System

RUM
Knowledge Base

] User Appiication |
1 (Lisp) Software

RUMrunner System

RUMrunner RUMrunner RUMrunner RUMrunner Fil RUM-unner '
Trangiator Knowledge Rep Inference Control [ Interface l

3

Figure 3.5: Transitioning from Development to Deployment
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The only alteration to the application software is made by calling a single function,
which identified the RUMrunner tasks which were time-critical and augmenting the cor-
responding queries with the appropriate time budget. The application is run, and its time
performance measured, resulting in some of the application functions running more than
200 dmes faster than those in the original RUM application. If the system is not meeting
its real-time requirements, the bottlenecks are identified and the system is fine-tuned.

3.6.4 Software Portability

Currently, RUM runs on top of KEE on Symbolics and Sun Workstations. RUMrunner
runs on Symbolics and SUN workstations with Lucid Common LISP. We are now ex-
ploring the porting of RUMrunner to Microvax and Masscomp workstations. We are also
developing an Ada version of RUMrunner, running on the Sun workstations, which will
be rule compatible with its Common LISP version.

3.7 Conclusions

In this paper, we have described the implementation of a simulation environment centered
around LOTTA, a symbolic simulator written in Flavors, and a reasoning system, RUM,
capable of reasoning with uncerntain information.

LOTTA provides the environment for simulating time-varying scenarios. RUM allows
the application to be built in a rich development environment, and then, using its run-time
counterpart RUMrunner, cross-compiles the knowledge into a more efficient form. The
compiled knowledge runs on an efficient driver so that modifications to the application
software are not required. Through planning on the compiled reasoning graph of facts
and rules, RUMrunner ensures that reasoning can be performed in the application within
an allotted amount of time. In addition, the resulting application can be asynchronous
and interruptible, to allow the system to be embedded into a larger real-time application.

The combination of LOTTA and RUM has proven adept at verifying the rule set and
functionality of applications, which require reasoning in complex, changing environments.
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4. New Results on Semantical Nonmonotonic

Reasoning
Allen L. Brown, Jr. Yoav Shoham
GE Corporate Research and Development Center Computer Science Department
P.O. Box 8 Stanford University
Schenectady, New York 12301 Stanford, California 94305
Abstract

In earlier reports we presented a semantical account of nonmonotonic reasoning
based on the partial ordering of interpretatons of standard logics. In this article we
generalize and extend the earlier work. We elucidate the structural relation between
the new work and the old. Finally, we apply the new results to give a logical
semantical account of justification-based truth maintenance,

4.1 Introduction

In [Sho86] a general semantical framework for constructing nonmonotonic logics was
developed. While this framework, based purely on partial orders on models standard
logics, does not capture all nonmonotonic logics, it does elucidate many of the better
known such logics, and serves a3 a basis for capturing the others. In this paper we
augment and generalize the previous work in three ways.

1. We investigate an altemative formulation, in which the relation on models is re-
flexive and transitive, but not necessarily a partial order (see below).

2. Relative to the first augmentation, we show a natural way in which to define
stratified nonmonotonic logics within the semantical framework.

3. We show how existing “truth maintenance” systems can be given a precise account
within our enlarged framework.

The following three sections deal with each of these three issues respectively. In the
remainder of this section we review the construction offered in [Sho86], so as to make
this article self contained.

As defined in (Sho86], a preferennal logic is the logic L, where L is any standard
(propositional or first order, classical or modal) logic, and C is any partial order on the
interpretations (or models) of £. Intuitively, C can be thought of as the “preferred model”
relation, so that the intuitive reading of M C M’ is "M’ is preferred over M.” Several
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formal properties were defined for preferential logics, such as satisfaction, satisfiability,
validiiy and entailment. Here we shall reconstruct only some of them.

Definition 4.1.1 A model M preferentially satisfies (p-satisfies) a sentence A in L- (writ-

ten M F- A) ifand only if M E A, and there is no other model M' such that M _ M’
and M' = A!

Definition 4.1.2 Let A and B be mwo sentences in L. A is said to preferendally entail
(p-entail) B (written A - B) if and only if for any M, if M - Athen M & B. In
other words, A =c B if and only if B is true in all preferred models of A.

Definition 4.1.3 L is preferentialiy monotonic (p-monotonic) if and only if for any .., 23
CEEC,lfA FC CthenA/\B}:C C.

Some preferential logics are monotonic (such as when one selects the empty partial
order). and many are not (such as those resulting from selecting the partial order implicit
in a circumscription axiom). We end this section with the following characterization of
p-monotonicity:

Definition 4.1.4 A partal order C is complete if and only if for every (possibly infinite)
sequence of models My T My C --- T M; T -- - tnere exists a inidel M that is an upper
bound for the sequence {that is, M; T M for every i in the sequence such that M; # M)
and there is no upper bound M’ for the the sequence such that M' C M.

Proposition 4.1.1 For any preferential logic C- such that C is complete, L is monotonic
if and only if T is the empty relation.

4.2 Biased Logics

The reader may have noticed that p-satisfiability, p-entailment and p-monotonicity would
be well defined even if C were not a partial order, although then we would lose the
intuitive meaning of that relation. In this section we investigate a slightly different
restriction on the binary relation that still makes intuitive sense.

Specifically, we propose replacing the C by any binary relation C that is reflexive
and transitive. We also replace the intitive reading of M C M’ as “M’ is better than
M’ by the intuitive reading of M C M’ as “M’ is at least as good as M.” We then
relate the new construction to the previous one, the intuition being that “ M’ is better than
M just in case “M’ is at least as good as M, but M is not at least as good as M’.”

As in the definitons in preferential logics, when in the following we speak of a
“standard logic™ we mean any of the customary monotonic logics (e.g., propositional or
first order, classical or modal, where in the modal case we allow any structure of possible
worlds). When we speak of an interpretation or a model in a standard logic, we mean
that which goes to the left of the F relation in that logic.

‘In {Sho86] p-satisfiability was called simply satisfiability, but here we shall want to distinguish it from
the related notion of b-satisfiability. The same applies to p-entailment and p-monotoniciry below.
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Definition 4.2.1 A biased logic is a logic L where L is any standard logic, and C is a
reflexive and transitive binary relation on interpretations of L.

The syntax of L¢ is identical to the syntax of £. Next we define the semantics.

Definition 4.2.2 Let M be an interpretation in L and A a sentence. M biasedly satisfies
(b-satisfies) A (written M ¢ A) if and only if
1. ME A, and
2. there is no M' such that
{a) M ; M/,
(b) M'Z M, and
(c) M'E A

Definition 4.2.3 Let A, B be sentences in L. A biasedly entails (b-entails) B (written
A kc Blifandonly if forany M, if M kc Athen M E B.

Definition 4.2.4 L is biasedly monotonic (b-monotonic) if and only if for any A, B,C €
Lo, if AEc C then ANB Ec C.

Analogous to our earlier characterization of p-monotonicity b-monotonicity is character-
ized as follows:

Definition 4.2.5 A reflexive, transitive binary relation C is complete if and only if for
every (possibly infinite) sequence of models My T M, C .- C M; C .- there exists a
model M that is an upper bound for the sequence (that is, M; © M for every 1 in the
sequence) and there is no upper bound M' for the the sequence such that M’ T M and
MZ M.

Proposition 4.2.1 For any biased logic L such that T is complete, L¢ is monotonic if
and only if C is the equivalence relation.

Biased logics are closely related to preferential logics. In fact, we show that one can
translate freely between these two types of logics, preserving the notions of entailment
and monotonicity.

4.2.1 From preferential logic to biased logic

The first translation is trivial. Given a preferential logic £ we construct the biased logic
Lc. where T is the reflexive closure of C. Observe that T is an equivalence relation
only if C is empty, in which case T would be the identity relation.

Proposition 4.2.2 Forany A, B, AEc Bin L ifand only if A rc Bin L.

Corollary 4.2.1 L is p-monotonic if and only if Lc is b-monotonic.
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4.2.2 From biased logic to preferential logic

This second translation is only slightly more elaborate. It is helpful here to have in mind
the graph-theoretic interpretation of biased logics. Each such logic L¢ defines a directed
graph G(V, E), where V' is the set of all interpretations of £, and E = {{M;, M2){M,; C
M,}. We can identify the strongly connected components [AHU74] of G, each being a
set of vertices any two of which are connected via a directed path (in both directions).
In our case, since C is transitive, we have that any two vertices in a strongly connected
component are in fact directly connected by an edge. In other words, each strongly
connected component is a complete directed graph. For a similar reason, we have that
if M; is a vertex in a component Cy, Mz is in C3, and (M;, M2) € E, then for any
M € Ci, M} € Ca, (M{,M3) € E. Now consider the so-called super graph of G,
G'(V', E"). V' consists of the strongly connected components of G, and (C1,C2) € E’
if and only if there are directed edges in G connecting the vertces in C) to the vertices
in C,. It is not hard to see ‘hat G’ must be acyclic, or, in other words, that E’ is a strict
partial order. With this intition, and given a biased logic £, we construct a preferential
logic as follows:

Definition 4.2.6
a. Mc M ifandonlyif M C M and M’ Z M.
b M~M ifandonlyif M T M and M'C M.

Lemma 4.2.1 C is a strict partial order, and ~ is an equivalence relation.

Proposition 4.2.3 For any A, B, A [ B in the biased logic L¢ if and only if A Fc B
in the preferential logic L.

Corollary 4.2.2 Lc is b-monotonic if and only if L is p-monotonic.

4.3 Stratifying nonmonotonic logics

In the previous section we showed how an apparent change in the logic in fact leaves
its expressiveness unchanged, although for some applications the new form will be more
convenient. Here we discuss another such augmentation, that is a very convenient one,
but which again does not complicate the properties of the logic.

In the construction so far, whether in the original formulation of preferential logics
or the new one of biased logics, we started by saying “start with a standard logic ...."”
We now propose to start with any logic, possibly a nonmonotonic one, and thus “stack”
nonmonotonic logics one on top another. This will be convenient for many purposes.
One example arises when we formalize truth maintenance systems. Another is logic
programming, where in determining the semantics of the negation operator, it is com-
putationally important whether or not the programs are “stratified.” Roughly speaking
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a logic program is stratified if it can be decomposed into layers such that one layer
refers only to predicates appearing in lower layers. Although we shall not discuss logic
programming any further here, we shall use the term stratified logics below, reflecting
the strong connection between our construction and these issues that are being actively
investigated in the logic programming community (Min87].

Definition 4.3.1 Given a standard logic £ and a set B = {C,} of reflexive and transitive
binary relaiions on interpretations of L, the set of stratified logics is defined inductively
as follows.

1. Cc is a stratified logic.

2. If Lx is a stratified logic and T,€ B, then L(xc,) is a stratified logic. Since the
notation is unambiguous, we shall sometimes drop the parentheses. For example,
mlght substitute ;1 giz E:; fOr ((,C_i‘lgu) [;:3)'

3. There are no other stratified logics.

The syntax of all these stratified logics is identical to that of £. Their semantics are
defined as follows. For every stratified logic £, .,  we define a relation T, -+ T,

on interpretations of £. This relaticn can be viewed as the iterative refinement of the
individual relations. Specifically, we make the following inductive definition:

Definition 4.3.2 Le: C,, --- T, be as above, and M, M, two interpretations. My T,
-+ G, M, if and only if one of two conditions holds:

1. My C,, .- Ci._, M;butitis not the case that My —,, --- C M.

=11 =itn-~l

2.M Gy, - Cy, M2, M, - C

= —"n-l

ﬂ[;, and M E‘" M.

Definition 4.3.3 Let Lg, .., be astratified logic. An interpretation M stratifiedly sat-
isfies (o-satisiics) A in £ feritter M b, g, A fandonly i

1. ME A and

2. there is no other M’ such that

(@) MC, - C,, M,
(b) it is not the case that M' C,, ---C,, M, and
(c) M E A
Definition 4.3.4 Let L, .., beastratified logic, and A, B two sentences in it. A strati-

fiedly entails (s-entails) B in L (written 4 Ec, -C., B)ifandonly if for any interpretation
M, lf M Fgll ~Cin A then M ,E B.
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Definition 43.5 L¢, .c,, & stratifiedly monotonic (s-monotonic) if and only If for any
A B,C,ifA Fg“...;_n C then AANB Fg“.“g‘ C.

Finaily, we note that stratified logics are not a radical departure from biased ones. In
fact, every biased logic is stratified and vice versa.

Lemma 4.3.1 ForanyC, ,---,C,, asabove, C;, --- C,,_ is both reflexive and transitive.
Lemma 432 C,, --- C,_ is complete if and only if each of the C,  is complete.

Corollary 43.1 Let C,, --- C,, be complete. Then T, --- T, is b-monotonic if and
only if each of the T, is b-monotonic.

4.4 Truth Maintenance

In this section we shall employ the results developed above to give a semantical account
of truth maintenance. While the definitions formulated and the results cited below can
be extended to a very general notion of truth maintenance (including assumption-based
truth maintenance) [Bro88], we shall restrict our attention to the classic nonmonotonic
justification-based truth maintenance (JTMS) of Doyle (Doy79]. Our first task is to define
the logical language £ implicitly employed by truth maintenance. Let P be a collection of
primitive propositions, of which p and q are typical members. Every primitive proposition
is a well-formed formula (wff). If F} and Fj are wif’s, so are —F}, Fi — F3,2 and O F}.
Formulae in the remaining standard Boolean connectives can be defined in the usual way
from the ones already given. The standard monotonic semantics ot £ is given by any of
the usual modal interpretations of modal propositional languages [GG84).3 As usual, an
interpretation satisfying every formula of a set of formulae is a model of that set. ‘0’ is
glossed ‘it is beiieved that .. .. Formulae of the form OF are beliefs, whilc those of the
form —~OF are negated beliefs.

The language admitted by JTMS's is a restriction of the language described above.
A formula F is primitive if and only if 1t is either a primitive proposition or negated
primitive proposition. OF is a premiss or primitive belief if F is primitive. A justification
is any formula of the form F — Fy A--- A F, where F is a primitive belief and each
F; is either a primitive belief or negated primitive bilief, F' being the consequent of
the justification and the F, being the antecedents. Antecedents that are primitive beliefs
are monotonic while those that are ncgaicd are nonmonotonic. A JTMS :theory is any

1We use the leftward pointing arrow for the implication connective both to be consistent with our notation
in related articles on this topic and because of the similarities between the logic of truth maintenance and
that of logic programming.

*The choice of interpretation is largely a question of deteraining the degree to which propositons believed
by a rational agent should be true propositions, and the degree to which this agent should be able to reflect
upon its own beliefs. In [Bro88] we consider a class of interpretatons that reflects exact{y the choice made
implicitly in various operational truth maintenance systems.
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finite set of premisses and justifications. Note that a premiss is in effect a justihication
with no antecedents. A JTMS theory is termed nonmonotonic (monotonic) if it has (no)
justifications with nonmonaotonic antecedents. For readers familiar with Doyle's work,
premisses and justifications in a JTMS theory are in correspondence with his homonymous
notions. Pnmitive beliefs correspond to his ‘nodes’.

We wum now to the nonmonotonic semantics of JTMS theories. Our aim 1s to char-
acterize modal interpretations in such a way as 0 make the admissible models of JTMS
theories satisfy exactly those primitive beliefs that a justification-based truth maintenance
system would label as “IN”. We shall employ the device of stratification iuitroduced
earlier.

Definition 4.4.1 A modal ‘nterpreiution validates a justification just in case one of the
following holds:

1. the interpretation satisfies the consequent and all of the antecedents of the justifica-
tion,

[

the interpretation fails to satisfy the consequent and at least one of the antecedents
of the justification.

Notice that an interpretation validates a premiss (a justification with no antecedents) if
and only if the interpretation satisfies the premiss.

Definition 4.4.2 A modal interpretation validates a primitive belief O F under a set of
justifications S just in case one of the following holds:

1. 1 E OF and there is a justification in S validated by [ whose consequent is OF,
2. [ # OF and every justification in S with consequent O F is validated by 1.

The validauon of a primitive belief corresponds to the intuition that whenever a primitive
belief is satisfied in an interpretation, there ought to be some justification supporting that
belief whose antecedents are also satisfied by the interpretation.

Definition 4.4.3 Let S be a set of justifications, and 1) and I be modal interpretations
of L Iy Cs It if and only if every primitive belief validated by [ under S is validated
by I under S I T, Iy if and only if every belief satisfied by Iy is satisfied by I.

A justification graph of a finite set of justifications is a directed graph containing a
vertex for each jusufication and a dirccted edge from one vertex 1o another just in case
the consequent of the justfication comresponding to the first vertex is an antecedent or
the negation of an antecedent of the justification corresponding to the second vertex. The
justification graph can be partitioned into strongly connecied components with the usual
induced partial order on those components [AHU74]. Being a finite set of justifications,
the partial order induced by partitioning the justification graph into strongly connected
components ts a graded partial order [Bir67] with the following grading:
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1. minimal acyclic components in the partial o:der have grade 0;

)

minimal cyclic components in the partial order have grade 1,

3. the grade of a component that is not minimal is one greater than the upper bound
among grades of its immediately antecedent (in the partial order) components.

The finite nature of the underlying set of justifications guarantees that there is a strongly
connected component of largest (finite) grade. Notice that each premiss results in a
strongly connected component of grade 0.

Definition 4.4.4 Let T be a JTMS theory. Let S, C T be those justificarions whose
corresponding vertices in the iustification graph are in strongly connected components of
grade n, where N is the maximum among grades of the strongly conrecied componenis of
the justification graph of T. A modal interpretation M of L is a JTMS model of a JTMS
theory T just in case M is a modal model of T, and there is no M’ such that M Cg,
Cs, -+ Csy T M whileitis not the case that M' Cs, Cs, --- Csy &, M.

To emphasize, a JTMS model is a modal interpretation that is at least as good as any
other interpretation in the stratified ordering, and this maximal interpretation also happens
to be a modal model of the JTMS theory. The stratified compounding of relations on
interpretations allows us to encode in the semantics the idea of well-foundedness that
plays a key role in truth maintenance.

Definition 4.4.5 A modal interpretation M of a JTMS theory 1 is well-founded in 7 if
and only if there is a partial order on primitive beliefs such that for every primitve belief
satsfied by M there is a justification whose consequent is that belief, whose antecedents
are satisfied by M, and all of whose monotonic antecedents precede the consequent belief
in the parnal order.

The following proposition relates the (essentially) semantical notion of straufication to
the (essentially) syntactic notion of well-foundedness

Proposition 4.4.1 A modal interpretation is a JTMS model of T if and only if it is well-
Sfounded in T and is a modal model of T .

Notice that in definition 4.3.3 given above that an interpretation s-satisfied a set of for-
mulae if it were a maximal (in the ordering on interpretations) interpretation satsfying
that set of formuiae. Here in contrast, we require that a JTMS model be maximal in
the ordering first and then satisfy the set of formulae. If we reversed the order of max-
imization and satisfaction in the definition of JTMS models, theories 7; and 75 below
would have JTMS models, which we do not want because the models in question would
correspond to naving ill-founded arguments for the beliefs satisfied.

98




Consider the following JTMS theories:
71 = {Op— Op},
., = {Op+~ -O0p},
73 = {Op«~ Cg,0q — Op},
74 = {Op— -0q,0q — —~Op},
7s = {Op~ -Op,0p — O¢,0q ~ Op,0q — ~Og}.

The JTMS models of 77 are the modal interpretations satisfying no primitive beliefs.*
T> has no JTMS models. The JTMS models of 73 are the same as those of 7. Ts
has two disjoint sets of JTMS models, those satisfying Op and no other primitive belief
and those satisfying Og and no other primitive belief. 75 has no JTMS models. Notice
that in this last case that the least modal interpretations are those validating Op — Cgq
and Oq — Op, and satisfying no primitive modal beliefs. These interpretations are not,
however, models of 75s. These examples are illustrative of an impc tant observation about
truth naintenance: While one might imagine that truth maintenance is a computational
realization of the proof theory of some logic, it appears, in fact, to be a realizadon of its
model theory. This point of view is justified by the following observations:

1. A JTMS model can be constructed directly from a valid labelling provided by a
Justificaticn-based truth maintenance system.

2. The failure of a justification-based truth maintenance system to produce a valid
labelling is indicative of the nonexistence of JTMS models (though perhaps of a
restricted class).

3. Construing a node’s theoremhood from its being labelled “IN™ requires the weak-
ening of the usual definition of theorem, while taking it as being satisfied in some
JTMS model of the theory requires no such change.

The following proposition formalizes the observation that viewed from the standard
(monotonic) point of view a JTMS theory can only impose primitive beliefs and never
negated primitive beliefs. As a consequence it is always consistent, hence has modal
models. From the nonmonotonic point of view, however, negated primitive beliefs can
be imposed hence admitting inconsistency with respect to that viewpoint.

Proposition 4.4.2 Every JTMS theory has standard modal models but not necessarily
JTMS models.

The following two propositions capture the essental feature of nonmonotonicity,
namely that the models for monotonic theories are in effect unique for each theory while
nonmonotonic theories admit multiple incomparable models. It is nicely illustrated by 7>
among the example JTMS theories above which has no JTMS models, but if we add Qp
to the theory it does.

“‘Depending on the class of modal interpretations chosen, there may be non-primitive beliefs which are
also satisfied.
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Proposition 4.4.3 Every monotonic JTMS theory has JTMS models and they satisfy pre-
cisely the same primitive beliefs.

Proposition 4.4.4 There are JTMS theories Ty C Tp such that no JTMS model of T is a
JTMS model of Th.

4.5 Conclusions

In the foregoing we have recapitulated our earlier results providing a framework for a
semantical account of nonmonotonic reasoning. In the present work we have generalized
from binary relations that are partial orders on interpretations to reflexive and transitive
binary relations on interpretations. We passed thus from the intuitive notion of a “pref-
erence for” some interpretations to a “‘bias towards” some interpretations. We further
extend the framework presenting a construction that compounds our biases towards in-
terpretations. We have articulated the relation between the original formulation and its
generalization and extension. While the particular version of stratification that we intro-
duced was defined in terms of an iterative refinement of our biases, it tums out that the
iterative construction is not essential. (Indeed, the idea of compounding can be extended
in both constructive and non-constructive.) Finally, we make direct use of stratification
to give a semantical account of justification-based truth maintenance systems.
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5. Logics of Justified Belief

Allen L. Brown, Ir.
GE Corporate Research and Development Center
P.O. Box 8
Schenectady, New York 12301
U.S.A.

Abstract
We give a formal semantics to truth maintenance by offering here a mathematical
logic—equipped with an underlying model theory—that is used to characterise quite
precisely some well known models of truth maintenance. Our usage of ‘precise’ is
doubly intended in that we give meaning to truth maintenance in terms of a formal
logic, and that each characterising logic corresponds to a particular truth maintenance
system and vice versa.

5.1 Introduction

Although there are various logical accounts of nonmonotonic reasoning (see [Per84] for
a complete survey) that have been equipped with suitable formal semantics (including
our own attempt in [Bro85]), none of these accounts captures both nonmonotonic and
assumption-based truth maintenance with satisfactory precision. The question we propose
to answer is: With respect to what logic might the labelled formulae of truth maintenance
systems be counted as theorems?

In the following we will develop logics and associated semantics that correspond to
the the justification-based truth maintenance systems (JTMS’s) of Doyle (Doy79] and
Goodwin [Goo87], the assumption-based truth maintenance system (ATMS) of de Kleer
[deK85], and our own algebraic nonmonotonic reason maintenance system (ANRMS)
[BGB86]. We will first provide a logic and model theory for the ANRMS. We will then
reduce the logical characterisation of other TMS’s to the ANRMS case. As we pointed out
earlier, our principle task is to make logical sense of truth maintenance labellings such as
the “IN” and “OUT" of Doyle. We do this this by formalising the propositional attitude of
belief for propositions relative to standards of credibility. We call these beliefs justified in
that they are the consequents of syntactically well-formed arguments. We distinguish them
from the true beliefs [Get67, Gri67, Mal67, Pri67] ordinarily of interest to philosophers
in that we are disinterested in whether the propositions are rationally compatible (just as
is the case in the fundamental computational mechanisms of truth maintenance systems).
The logics we construct will give a syntactic and semantic characterisation to justifications
and beliefs.
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5.2 Syntax

Let P be a set of primitive propositions. p, ¢, (possibly subscripted) will denote partic-
ular elements of P. Let £ be a Boolean lattice! with domain D, meet (M), join (L) and
complement (~) operators, a partial order (C), and least (L) and greatest (T) elements.
A, B (possibly subscripted® -l denote particular elements of L. Any element of L is
a lattice expression, as are any meets, joins or complements of lattice expressions. z,y
(possibly subscripted) will be syntactic variables ranging over lattice expressions. We
define the well-formed formulae (wff’s) of the multi-modal logical language as follows:

1. Every element of P is a wif;

2. If Fisawff, sois -~ F;

3. If F} and F5 are wifs, sois F] — F3;

4 If Fisawffand A € £, then [A]F is a wif.

The language £ can be extended to include the other standard Boolean connectives by
definition relative to ‘-’ and ‘~’ in the usual way. Let L be an atomic sublattice of
L. For the purposes of the present exposition we wish to consider”, a sublanguage of
defined as follows.

1. If pe Pand A € £, [A]p. and ~[A]p all formulae of ~ where  denotes one of
por =p. ‘[A]’ is a belief modality. Formulae of the form [A]p, and -[A]p are
called (respectively) beliefs and negated beliefs with core p. The sets of beliefs
and negated beliefs will be denoted [£]P and —~[L]P respectively. Similarly, if
P C P (P being the set of possibly negated primitive propositions), [£]P and
-[L]P are respectively the set of beliefs and negated beliefs whose cores are in P
and whose modalities come from L.

2. If 5,§1se - GmsT1s..,Fn are in P and A is an atom of L, then

(Al — [Al@ A A[A)Gm
[Alp — S[AIF)A - A-[A]F,
(Alp — [Al@i A A[AlGm A (AR A - A S[A]FR

are all in . Formulae of the latter form are called justifications when [A]p is
the consequent of the justifications, while [A]G,...,[A]§n and =[A]F,... ,2[A]7,
are respectively the monotonic and nonmonotonic antecedents of the justfications
where they are mentioned. Justifications without nonmonotonic antecedents are
termed monotonic while those with are termed nonmonotonic.

!The logical results developed in this paper can be generalised to any complete latice. As we are interested
in logically characterising exxard truth maintenance systems, Boolean lattices are both sufficient and more
direct in achieving our ends.
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3. No other formulae are in”,

We presume the existence of a total lexical ordering on the formulae of .

For notational convenience we allow justification schemata that have the same form
as justifications with lattice variables substituted for lattice elements. The intended in-
terpretation of these schemata is that they stand for the justifications resulting from all
possible substitution instances of atoms from £ for variables. Formally, a TMS theory,
T, is any finite set of beliefs, justifications and justification schemata having no explicit
occurrences of 1. The specific atomic lattice L of interest to us is the sublattice of £
generated by taking all the expressions in meets, joins and complements over the lattice
elements appearing among the beliefs in 7. TMS theories are multi-modal propositional
theories. Beliefs whose modality is an atom of £ will be termed atomic. We may think
of a belief in a TMS theory as a justification having no antecedents. The set of premisses
of a TMS theory are the beliefs it contains together with all the formulae (B}f where
B= Ay U---U A, and each of the A, is an atom of L such that there is a belief [B'lp in
the TMS theory with A; C B’ for every i. It will be more convenient for us to think of
a theory as being all of its premisses together with its justifications and all of the atomic
instances of its justification schemata. A TMS theory having nonmonotonic justifications
or justification schemata is nonmonotonic.

We interpret the modalities generated by the lattice as standards of credibility. With
respect to that interpretation we give the following informal readings to formulae: [A]p
means that the proposition p is credible at the standard A. —[ B]q means that the propo-
sition ¢ is incredible at the standard B. [A]r « [A]p A -~[A]q means that should the
proposition p be credible at the standard A and should the proposition ¢ be incredible at
the standard A, then the proposition r is credible at standard A.

Cr, the set of completions of T, is the set of subsets, S, of ~such that

1. TCSCH
2. every formula [L]pis in S;
3. for every formula ﬁ‘e P and every A € L either [Alp e Sor -[Alp€ S;
4. no other formulae are in S.
For A, B € L we define the deduction operator 01 for the theory T as follows:
L. T C 3r(S)
2. [L]p € O7(S)
3. [A)p € 07(S) whenever [B]p € 87(S) for AC B;
4. [AU B]p whenever [A]p € 87(S) and [B1p € 07(S);
5. -[A)p € 07(S) whenever ~[B]p € 37(S) for A J B;
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6. if =[A]p and [A]p are both in S, then -~[B]§ and [ B]§ are in 97(S) for every §
and B;

7. [Alp € 91(S) whenever there is a set of justifications in in 7 the cores of whose
consequents are all 7, the join of the belief modalities of the consequents is at least
A, and all of whose antecedents are in S;

8. -[A]p € 87(S) when for each justification in 7 with consequent { A]p, the negation
of at least one of its antecedents is in S;

9. -[A]p € 01(S) whenever [A]p & 07(S);
10. no other formulae are in 37(S).

We will say that Sy € Cr 478, € Cr if whenever a belief [A]p is in the former set of
formulae, it is also in the latter. We are typically interested in the least (with respect to
d7) fixed points of dr. We will refer to a fixed point of a theory, 7, meaning a fixed
point of its deduction operator. A set of formulae, S, will be termed inconsistent if it
contains both a belief, [A]p, and its negation, ~[A]p.

For least fixed points to be interesting they must exist:

Proposition 5.2.1 Every TMS theory has a least fixed point.

Since TMS labellings can obviously be nonmonotonic as, for example, when the
addition of new justifications causes formulae formerly labelled as “IN” to be relabelled
“OUT", the corresponding logical theory ought to have this property as well:

Proposition 5.2.2 There exist TMS theories Ty and T, such that there is no least fixed
point of Ty U T, containing any least fixed point of T;.

A partial order, a subset of D?, is graded if there is a function from D into the
non-negative integers such that

1. every d € D has a grade;

2. the grade of d € D is 0 whenever there is no d' € D such that ¢’ is less than d in
the partial order;

3. the grade of each d € D is larger than that of every d' € D smaller than d in the
partial order.

A fixed point, S, of a theory, T, is well-founded if there is a graded partial order, <s, on
atomic beliefs (of S) such that for every atomic belief [A]j € S, there is a justification
whose consequent is [ A]p, all of whose ant.cedents are in S and each of whose monotonic
antecedents is less in the <s ordering than [A]p.

We complete this section with some additional proof-theoretic results for TMS theories
that will serve us later in our investigation.
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Pronosition 5.2.3 Ler & be a well-founded least fixed point of the TMS theory T. Let <gs
be a graded partial order for S. There exists a least partial order contained in <s under
which S remains well-founded.

A TMS theory, 7, together with 3r is a logic of justified belief. As mentioned
earlier, we speak of justified beliefs rather than true beliefs. For a belief to be justified
we merely require it to be grounded in a well-founded argument (the partial order on
a fixed point extended to include justifications). Thus it is possible for both [4)p and
{A]-p to be justified in a consistent TMS theory even though this pair of beliefs ought
not be held by a rational agent. This contrasts with logics of true belief wherein the
cores of positive (negative) beliefs are typically (non-)theorems is some underlying non-
modal theory. In general we shall be interested in least fixed points of the justification
operators of particular TMS theories, where those fixed points are well-founded under
the associated partial order. Consider the TMS theories over the lattice {1, T}

Ti = {[Tlp~ ~[Tlp},

T, = {[Tlp~1[Tlg,(Tlqg —[TIp},

o= {[Tlp~ ~iTlg,(Tlg « ~(TIp},

Ta = {(Tlp— ~[TIp,(Tlp — (T1q,(Tlg — [TIp,({Tlg — ~[Tlg}.

Ti has a single least fixed point, 7; U [L]P U ~[£]P, and it is inconsistent. 7 has two
consistent least fixed points, 72 U [L]P U ~[TJP and T U [LIP U ~[TUP - {p,q}) U
{{T1p,[T]q} of which the first is well-founded. 75 has two least fixed points, 73 U[L]PU
{ITIpYU-ITIP - {p}) and ZUILIPU{[TIlg} U=[TI(P - {g}), and each of them is
consistent and well-founded. 7 has a single least fixed point, 7z U[L]PU{[Tlp,[Tlq}U
-~[TXP - {p,q}) and it is consistent and not well-founded.

Proposition 5.2.4 If T is a monotonic TMS theory, then it has a unique consistent well-
founded least fixed point.

The deduction operator is meant to capture the constraint propagation processes im-
plicit in the various truth maintenance systems. The fixed points of TMS theories meant
to capture that which has been proven in some underlying deductive theory in contrast
to that which is provable. The correspondence between the syntactic notion of justifica-
tion given above and the homonymous notion in the TMS's of Doyle and others will be
apparent to readers familiar with those investigators’ systems. QOur aim here is for the
justifications in 7, having no antecedents, to correspond to the premisses of a typical
truth maintenance system. We mean for consistent completions and truth maintenance
labellings to have the following correspondence: For a given consistent completion con-
taining the belief [ A]5 and not containing [B)j for A — B (i.e. A is a maximal standard
at which p is believed), the corresponding truth maintenance labelli..g would have the
label A on the node identified with p. Readers familiar with Doyle's JTMS may readily
verify that a TMS node identified with p being labelled “IN” correlates with [ T}5 being
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in the corresponding consistent completion. Having given a syntactic characterisation to
truth maintenance by defining a formal logic of justified belief, we turn now 0 supplying
a suitable semantics for that logic.

5.3 Semantics

In this section we will equip TMS logics with a possible worid semantics [Che80, GG84,
HC68]. Specifically, we make use of neighbourhood interpretations®> [GG84]. In order
to capture the nonmonotonicity of TMS theories, we base our semantics on the idea of
minimal models. a notion introduced by McCarthy [McC80] and Davis [Dav80), further
pursued by Bossu and Siegel [BS85], and ultimately explored and exploited by Shoham
(Sho86]. Finally, it will develop that the computation carried out by a truth maintenance
system will correspond to the construction of an appropriate model should such a structure
exist
A neighbourhood interpretation, T, is a structure (W, x, ) where

1. W is a non-empty set of worlds;

2. m: P — 2", the range being the set of subsets of W;

3wl — 2@ the range being the set of subsets of the functions from W to
subsets of W

S. for every p,w there is an f € u(L) such that f(w) = r(p);
6. for every —p, w there is an f € u(L) such that f(w) = W — x(p).

We will subscript the various clcmcms’ of a structure as required to avoid ambiguity of
reference. Let F, F| and F; be formulae of . An interpretation 7 satisfying () a formula
at a world is defined by the following cases

. ZwkEpe Pif we n(p)

2. T,wk~FifT,w§F,

3. Z,we 1 — K ifeitherZ,wkE Flor Z,w ¥ F;

4- T,w E [A]F if there is a function f € u(A) such that f(w) = {w’ € W|T,w' E F}.

3Chellas [Che80] calls these minimal models, but we wish 10 reserve that term for another usage. By
analogy with dynamic logic {GGB84] where every programme induces a modality and an accessibility rela-
don, in TMS logic each lattice expression (standard of belief) over C induces a modality and a family of
accessibility functions.
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A neighbourhood interpretation satisfies a formula if it satisfies it at every world. A
neighbourhood interpretation is a neighbourhood mode! of a set of formulae (including
a TMS theory) if it satisfies all of them. Z; <7 I, for neighbourhood interpretations 7,
and I, if 7; satsfies every belief sadsfied by Z-.

We need a semantic characterisation of well-foundedness.? To achieve this we define a
least neighbourhood model .M of a TMS theory 7 to be forthright if there is a sequence
of neighbourhood models Mg, My,..., M, = M, and a sequence of subsets of 7,
SoC S1C - C S, such that

1. So is the set of premisses of T,
2. S, contains Sg together with a subset of the jusdficadons of 7,
3. 4‘;\/‘.‘ F 5;;

4. M, sadsfies the antecedents of each of the justifications in .§; but none of the
consequents of S, — S;_1.

M, satsfies the antecedents and consequents of each of the justifications in 5;;
Wi=)W,;and m; =, fori,j < n;

pi(A) C pj(A) fori < jand all A € £;

if M, &= [B]§, then M, E[B)§ fori < j;

e N o W

if M;_1 ¥ [B]§ and .M, E [B]g, then there is a se* of justifications in S§; whose
consequents are {B1)q1,...,[Bmldm with B C |icicm Bi.

A TMS model of T is a forthright, minimal (in the partial order <7) neighbourhood model
of 7. Intuitively, a TMS model says that as few beliefs as possible are s~tisfied and that
the antecedency relation is a partial order with respect to beliefs. The sequence S; captures
the argument supporting any particular belief, and such beliefs are ultimately grounded
either in premisses or in negated beliefs. Indeed, the sequence of subsets necessary
to forthrightness can be viewed as inducing a second partial order on neighbourhood
models. TMS models can then be viewed as minimal with respect to both partal orders.
We complete our study of TMS semantics with a completeness result for TMS theories:

Theorem 5.3.1 Let T be a TMS theory. Let S € Cr be consistent. M is a TMS mode!
of S and T if and only if S is a least, well-founded fixed point of O

n {SB88} we achieve this end by means stratified entailment, an abstraction closely related to the
technical device of stratification that has been intensively studied in the logic programming community.
Unfertunately our limited space here obliges to rely un a less scenic but more direct path.
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5.4 Particular Truth Maintenance Systems

Logics of justified belief in their full generality have been conceived to give a logical
account of lattice-based truth maintenance. Since other well-known forms of truth main-
tenance are specialisations of lattice-based truth maintenance, their logical accounts are
given by analogous specialisations of logics of justified belief. We will borrow liberally
from [BBG86] wherein we elaborate the reductions of justification-based truth mainte-
nance and assumption-based truth maintenance to our own model of truth maintenance
based on Boolean lattices. We briefly sketch the logical accounts of Doyle’s JTMS and
de Kleer’'s ATMS based on those reductions.

Recall from {[BGB86] that a lattice-equational system is a set of equations, each having
either the form s = A or the form s, =, ¢, U:e[ Rt where A, # L is an element of
the Boolean lattice £ and the s’s are unknowns ranging over lattice elements, with each
unknown standing for (a possibly negated) primitive proposition. The corresponding TMS
theory is formed in the following way: For each unknown, s, there is a corresponding
proposition, p,.* For each disjunct of each equation there is a justification in the sense
defined in section 5.2. For example, an equation of the first form above yields the
premiss [Ag]px. A disjunct, say | J;¢s & Sio of an equation of the second form yields the
justification schema, [z]py — A, I -w}[x]p. where the optional negation ({-}) occurs
on the right-hand side whenever the corresponding unknown was complemented in the
original lattice equation. Recalling from [BGB86] that a set of JTMS justifications is
rendered as a lattice-equational system over the lattice {1, T}, the logical account of the
JTMS follows immediately.

Capturing the assumption-based truth maintenance of de Kleer requires some addi-
tional elaboration. Let A be a finite set of assumptions. The set of sets 22" forms a
Boolean lattice with set containment, intersection and union playing the roles of par-
tial order, meet and join. Lattice complementation is the set complement of an ele-
ment of the lattice with respect to the maximal element 2#. It is in this lattice that
assumption-based truth maintenance implicitly operates, though no use is made of set
complementation. We define widening and narrowing of elements of 2** as follows:
zt={ye2t3zerlzCyl}and z § = {y € z|-3z € z[z C y]}. A system of ATMS
justifications is straightforwardly translatable into a lattice-equational system where the
labels on premiss nodes become widenings of the ATMS labellings. From lattice equa-
tional systems we pass to TMS theories by the same recipe as cited above. The solution
to the lattice-equational system after narrowing is exactly the same as the labelling that
the ATMS would have produced.

*Keep in mind that primitive propositic;s marked with ‘™" denote possibly negated primitive propositions,
while similarly marked lattice unknowns denote possibly complemented unknowns.
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5.5 Relation to Other Logical Systems

While the principal aim of this work is to give a “tight” (i.e. no more, no less) logical
characterisation of truth maintenance, logics of justified belief exhibit noteworthy simi-
larities in terms of both specific attributes and overall formal structure to a number of
other logical systems. We sketch briefly below the connections with some of those other
systems.

In [ABW87] Apt, Blair and Walker introduce the idea of a stratified logic programme
which has been further elaborated and exploited by various investigators. By disallow-
ing certain combinations of recursion and negation, a logic programme can be given
a simple declarative and procedural meaning, the latter being equivalent to a complete
proof procedure. In operational truth maintenance systems there are similar restrictions
on combining negation and recursion (e.g. the prohibition of so-called “odd loops™),
the effect being to reduce the computational complexity of calculating truth maintenance
labellings. Stratification is very closely related to the concepts of well-foundedness and
forthrightmess that we have defined in this paper. The essence of both stratification and
well-foundedness is that certain partial orders are induced that can be exploited in the
construction of standard models for the respective logical theories.

In (Lev84), [FH85] and [HM85] Fagin, Halpem, Levesque, and Moses explore log-
ics whose intention is to be expressive of the concepts of implicit and explicit belief,
awareness, knowledge and limited reasoning. Of course, one of the onginal aims of truth
maintenance systems was to formalise limited reasoning. Logics of justified belief give
a logical account of that formalisation. Indeed, the limited logical language presentcd
here only allows explicit belief, although there is an obvious extension to include implicit
beliefs. Another point of similarity with the work of the authors cited is that irrational
beliefs may be entertained by their logical systems without introducing logical inconsis-
tency. Finally, the ideas of common knowledge and implicit knowledge among reasoning
agents is closely related to the meet and join operations on the lattice structure that we
have made use of in this work.

In [Gin87] and [Fit87] Fitting and Ginsberg explore the idea of interpreting logics over
a general bilattice (in contrast to the usual two-valued Boolean lattice). In so doing they
achieve plausible logical characterisations of evidential and default reasoning and truth
maintenancs It should first be noted that there is an easy translation from (non-modal)
logics interpreted over a lattice of truth values to multi-modal logics interpreted over
the usual truth values, with the modalities having a lattice structure. While Ginsberg's
characterisation of truth maintenance has strong underlying similarities to our own, we
feel that our modal approach more directly captures the idea of relative belief implicit in
truth maintenance. Also, in its full generality our system allows the ascription of belief
to compound structures to be independent of the belief ascribed to the constituents.

In [RdK87] Reiter and de Kleer endeavour to give a precise logical characterisation
to de Kleer's ATMS. They succeed admirably as well as generalising the idea of a truth
maintenance system to clause maintenance. The structure of prime implicants that they
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elucidate for the ATMS can be (and is) exploited in the implementation of a lattice-based
truth maintenance system. There are three technical differences between their work and
ours that we should like to highlight. Unlike their logical account, assumptions in our
logic (the lattice of modalities) are ontologically distinct from primitive propositions. This
is reflected in both their syntax and semantics. While some may see this as merely a matter
of taste, we believe that our realisation of assumptions better reflects the intentionality of
assumptions as “mental states” with respect to which various things might be believed.
The other two differences are of a more substantive technical nature: First, our logic gives
an account of nonmonotonicity. (Of course, the technical device of minimal models could
be used to realise a nonmonotonic version of Reiter and de Kleer’s logic too!) Second,
that their logic really does not distinguish assumptions from propositions prohibits the
possibility cf helding both a primitive proposition and its negation to believed relative to
the same assumption. While it is often the case that a problem solver wishes to impose
exactly such a prohibition, we have encountered a number of applications in which this
prohibition is aot desirable.

In [San87] Sandewall attempts to address the defects of partial models as semantical
accounts of partial knowledge. The essential feature of his approach is a truth valuation
that assigns every a truth value in a four-valued lattice. This permits the “knowing”
the truth value of a compound proposition while being ignorant of the truth values of
its constituents. Logics of justified belief can express that epistemic state, as well as
some states that are not expressible in Sandewall's semantics. While there seems to
be a cenain inter-expressibility between his and our logic, much more interesting is the
correspondence between minimal interpretations we have defincd among the partially
ordered neighbourhood interpretations of TMS theories and the condensations among the
sets of his epistemic interpretations that he defines. A TMS model “believes” as litde as
possible while a condensation “knows™ as little as possible.

5.6 Conclusions

We have defined a collection of logical theories and associated them with various models
of truth maintenance. We have identified the truth maintenance concepts of premiss,
assumption, justification, node, “IN" and “OUT" with certain syntactic constructs in those
logics. We have characterised the proof theories of those logics in terms of a deduction
operator and its fixed points from the set of completions of those theories. Each instance
of a given logic is uniquely identified with a set of premisses and justifications in a
corresponding truth maintenance paradigm (and vice versa). We have given a semantical
account of these logics in terms of minimal madels. As it tums out,- the labelling process
carried out by a truth maintenance system corresponds to the construction of a minimas
modcl should such an object exist.
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Abstract

Two major difficulties in using default logics are their intractability and the prob-
lem of selecting among multiple extensions. We propose an approach to these prob-
lems based on integrating nonmonotonic reasoning with plausible reasoning based
on triangular norms. A previously proposed system for reasoning with uncertainty
(RUM) performs uncertain monotonic inferences on an acyclic graph. We have
extended RUM to allow nonmonotonic inferences and cycles within nonmonotonic
rules. By restricting the size and complexity of the nonmonotonic cycles we can still
perform efficient inferences. The uncertainty measures in RUM provide a basis for
deciding between multiple defaults. Different algorithms and heuristics for finding
the optimal defaults are discussed.

6.1 Introduction

The management of uncertain information in first generation expert systems, when ad-
dressed at all, has largely been left to ad hoc methods. This has been effective only
because operational expert systems normally assume that knowledge is complete, pre-
cise, and unvarying. This fundamental assumption is a principal source of the limitation
of many diagnostic systems to single fault diagnoses, and the limitation of classification
systems to time-invariant phenomena. See references (2] and [Pea88] for a survey of
approaches to reasoning with uncentainty.

The management of incomplete information has also lacked a clear focus, as some
researchers have attempted to find its solution by defining new nonmonotonic logics,
by augmenting classical logic with default rules of inference, by searching for minimal
models via functional optimization, or by concentrating only on the instruments, i.e.

*Currently with Knowledge Analysis, Belmont, Massachusets.
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TMSs, rather than the theory required to handle this problem. See references [BB8&S],
[Rei88] and [Eth88] for a survey of approaches to reasoning with incompleteness.

In the past, a subset of the authors have contributed to the development of individual
theories for reasoning with uncertainty and incompleteness. Bonissone has proposed
RUM, a system for reasoning with uncertainty whose underlying theory is anchored on
the semantics of many-valued logics [3]. This system provides a representation layer to
capture structural and numerical information about the uncertainty, an inference layer to
provide a selection of truth-functional triangular-norm based calculi (1], and a control
layer to focus the reasoning on subsets of the KB, to (procedurally) resolve ignorance and
conflict, and to maintain the integrity of the inference base via a belief revision system.
RUM, however, does not provide any declarative representation to handle incomplete
information.

Goodwin [Goo87] and Brown [BGB87] have provided such a representation by de-
veloping theories based on nonmonotonic dependency networks and algebraic equations
over boolean lattices, respectively. These approaches, however, have totally neglected
the aspect of uncertain information.

Another motivation is the existence of a new class of problems, referred to as dy-
namic classification problems [BW88], which cannot be properly addressed without an
integration of the theories for reasoning with uncertainty and incompleteness. Preliminary
work in this integration have been reported by D’Ambrosio (integrating assumptions and
probabilistic reasoning) [Dam88]} and Brown (integrating assumptions and nonmonotonic
justification with uncertainty measures) [BBS88].

6.1.1 Proposed Approach

We have concentrated our efforts in integrating defeasible reasoning (based on nonmono-
tonic rules) with plausible reasoning (based on monotonic rules with partial degrees of
sufficiency and necessity). In this paper we will present the preliminary results of such
an integration.

In our approach, uncertainty measures are propagated through a Doyle-JTMS graph,
whose labels are real-valued cemainty measures.! Unlike other default reasoning lan-
guages that only model the incompleteness of the information, our approach uses the
presence of numerical certainty values to distinguish quantiratively the different admis-
sible labelings and pick an optimal one.

The key idea is to exploit the information on the monotonic links carrying uncertainty
measures. A preference function based on such measures is used to select the extension,
i.e., the fixed point of the nonmonotonic loop, which is maximally consistent with the
soft constraints imposed by the monotonic links. Thus, instead of minimizing the cardi-
nality of abnormality types [McC86] or of performing temporal minimizations [Sho86],

't is also possible to decompose such a graph into a directed acyclic graph (DAG), whose nodes can
either be object-level variables or nonmonotonic loops. The links in the DAG are plausible inference rules
with Hom clause restrictions. The nonmonotonic loops are Strongly Connected Components (SCCs) of the
graph, containing nonmonotonically justified rules.
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we maximize an expectation function based on the uncertainty measure. This method
breaks the symmetry of the (potentially) multiple extensions in each loop by selecting
a most likely extension. This idea is currently being implemented in PRIMO (Plausible
ReasonIng MOdule), RUM’s successor.

The following section defines PRIMO’s rule-graph semantics and constraints. Section
3 describes the generation of admissible labelings (consistent extensions) and introduces
an objective function to guide the selection of preferred extensions. A small example
illustrating the algorithm for propagating bounds through a PRIMO graph is shown in
Section 4. Section 5 deals with optimization techniques (applicable on restricted classes
of graphs) and heuristics (such as graph decomposition into strongly connected compo-
nents), which can be used to generate acceptable approximation to the optimal solution.
The conclusion section summarizes our results and defines an agenda of possible future
research work.

6.2 Plausible Reason/ng MOdule

The decision procedure for a logic based on real-valued truth values may be much more
computationally expensive than that for boolean-valued logic. This is because in boolean-
valued logic only one proof need be found. In real-valued logic all possible proofs must
be explored in order to ensure that the certainty of a proposition has been maximized.

RUM (Reasoning with Uncertainty Module), the predecessor to PRIMO, was designed
as a monotonic expert system shell that handles uncertainty according to triangular norm
calculi?. It deals with the possible computational explosion by allowing only propositional
acyclic® quantitative Hom clauses.

To avoid the problems of first order reasoning, RUM restricts it rules to be propo-
sitional. RUM allows the user to write first-order rules, but insists that they are fully
insiantiated at run time. Thus a single rule may give rise to many rules at run time, all
of which are propositional, thus avoiding the problems of first-order reasoning.

RUM restricts its rules to Hom clauses; it deals with negative antecedents by treating
P and - P independently. We denote the ceftainry of P as LB(P). The only time P and
- P will interact is when LB(P) + LB(-P) > 1 (both P and - P are believed). When
this occurs a conflict handler tries to detect the source of inconsistency®.

Due to these restrictions a simple linear time algorithm exists for propagating certainty
values through RUM rules. Resolution of inconsistency by the conflict handler, however,
may require cost exponential in some subset of the rules.

PRIMO (Plausible Reasonlng MOdule) is the successor to RUM designed to perform
nonmonotonic reasoning. PRIMO extends RUM by allowing nonmonotonic antecedents.

7’I'n'angular norm calculi represent logical and as a real valued function called a t-norm, and logical or
as a s-conorm. For an introduction to them see (3).

3Unless an idempotent t-norm is used cyclic rules will cause all certainties in the cycle to converge to 0.

*Note that the above constraint on LBs implies an upper-bound on LB(P) of | — LB(—P). In the literature
this is denoted as UB(P). LB and UB are related just as support and plausibility in Dempster-Shafer, or O
and ¢ in modal logics.
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PRIMO also allows nonmonotonic cycles which represent conflicts between different
defaults. We provide a formal overview of PRIMO below:

Definitions: A PRIMO specification is a triple (L, I, J). L is a set of ground literals.
such that whenever ! € L, I € L. For { € L, LB(]) € {0, 1] is the amount of evidence
confirming the truth of /. J is a set of justifications. A justification, j, is of the form:

/\ma; A /\nma,- g
; i

where s € (0, 1], the sufficiency of the justification, indicates the confidence of the
justification; ma; € L, are the monotonic antecedents of 7; nz.a; are the nonmonotonic
antecedents of j, and have the form, ~[{a]p, where p € L, with the semantics:

{0 ifLBG) > a
LB(“@P)‘{ 1 ifLB() < a

The input literals I C L, are a distinguished set of ground literals for which a certainty
may be provided by outside sources (¢.g. user input), as well as by justifications. The
certainty of all other literals can only be affected by justifications.

A PRIMO specification can also be viewed as an AND/OR graph, with justifications
mapped onto AND nodes and literals mapped onto OR nodes.

Definition: A valid PRIMO graph is a PRIMO graph that does not contain any cycles
consisting of only monotonic edges.

Definition: An admissible labeling of a PRIMO graph is an assignment of real
numbers in [0, 1] to the arcs and nodes that satisfy the following conditions:

1. the label of each arc leaving a justification equals the t-norm of the arcs entering
the justification and the sufficiency of the justification and

2. the label of each literal is the s-co-norm of the labels of the arcs entering it.

A PRIMO graph may have zero, one, or many admissible labelings. An odd loop (a
cycle traversing an odd number of nonmonotonic wires) is a necessary but not sufficient
condition for a graph to have no solutions. Every even cyclic graph has at least two
solutions. In these respects PRIMO is like the Doyle JTMS [Doy79]. Proofs can be
found in [Goo88]

6.3 Finding Admissible Labelings

As with most TMS problems, it is natural to propagate constraints as far as possible
before resorting to search.
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6.3.1 Propagation of Bounds (PB)

In PRIMO, propagation of bounds (PB) on LB’s will penetrate furtner than propagation of
exact values alone. It may even trigger further propagation of exact values when bounds
are propagated to a nonmonotonic antecedent whose value of a falls outside of them.
Thus PB sometimes solves an entire cycle exactly which is impenetrable to propagation
of exact values alone.

PB labels vertices with pairs of values representing lower and upper bounds on
the exact LB of that vertex in any admissible labeling. These bounds are successively
narrowed as propagation continues. For a vertex v at any time during execution, we
define LB~ (v) and LB*(v), the lower and upper bounds on LB(v) at that time, to be
functions of the bounds then stored on the antecedents of v. LB~ uses the lower bounds
of monotonic antecedents and the upper bounds of nonmonotonic ones; LB* uses the
upper bound of menotonic and the lower bound of nonmonotonic antecedents. The
actual function applied to these values is the same one used to compute LB itself for that
vertex. The algorithm is then:

1. Initialize every input node, where k is the confidence given by the user, to {k, 1]
i.e. “at least k”. Initialize every other vertex to {0, 1].

2. While there exists any vertex v such that the label on v is not equal to
[LB~(v),LB*(v)], relabel v with that value.

It can be shown that PB converges in polynomial time, yields the same result regard-
less of the order of propagation, and never assigns bounds to a vertex which exclude any
value that vertex takes on in any admissible labeling. (Thus PB will never find an exact
solution for a graph which has more than one.) Proofs can be found in {Goo88].

6.3.2 A Labeling Algorithm for PRIMO

Definitions: A nonmonotonic antecedent is satisfied if LB* < a, exceeded if LB~ > «,
and ambiguous if LB~ < a < LB*. A labeled graph is stable if it is closed under PB, i.e.,
every vertex v is labeled [LB~(v),LB*(v)]. In a stable graph, a siarter dependency is an
AND-vertex which has no unlabeled monotonic antecedents, no exceeded nonmonotonic
antecedents, and at least one ambiguous nonmonotonic antecedent.

A starter dependency must be unlabeled, with a zero LB~ and a positive LB*. Because
PRIMO nets contain no monotenic loops, a starter dependency always exists (unless PB
labeled the entire graph exactly) and can be found in time linear in the size of the
graph. Because the only <inputs left undetermined are nonmonotonic antecedents (i.e.,
thresholds) a starter dependency must be labeled exactly LB~ or LB* in any admissible
labeling which may exist [Goo88].

One can therefore find all admissible labelings of a stable graph in time exponential
in the number of starter dependencies, simply by generating each of the 2% ways to
label each of & starter dependencies in the graph with its LB~ or LB*, and testing each
combination for consistency.
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A straightforward algorithm to do this would search the space depth-first with back-
tracking. Each iteration would pick a starter dependency, force it to LB~ or LB*, and
perform PB again. Continue until either a solution is produced or an inconsistency is
found, and then backtrack.

Inconsistencies can only occur at a starter dependency, when either (1) the starter
was earlier forced to LB~ (i.e., zero) and PB just found positive support for it, or (2)
the starter was forced to LB* (i.e., a positive value) and the last support for it was just
relabeled zero.

Practical efficiency may be greatly enhanced if the starter dependency is always
chosen from a minimal strongly connected component of the unlabeled part of the graph.

Below we consider more sophisticated methods for searching this space.

6.3.3 Consistent and Preferred Extensions

The discussion and algorithm given above indicate that in a stable graph the problem of
deciding upon how to resolve: the ambiguous nonmonotonic wires is a boolcan decision.
Thus we should be able to formulate this problem in propositional logic, the satisfying
assignments of which would represent the various consistent extensions of the PRIMO
specification.

We now present an alternatc guiithm, based on propositional satisfiability, for find-
ing consistent extensions. We aiso show how this algorithm can be used to find an
optimal extension. .

In general, a set of formulae will have many extensions. Given such a set of ex-
tensions, some may be preferable to others based on the cost associated with choos-
ing truth values for certain nodes. That is, the LB of the ambiguous antecedents
will be coerced to either LB~ or LB*. We will prefer extensions in which the sum
of the differences between their current values to their coerced values is minimized.
More formally, let ﬂ pi be the set of nonmonotonic premises from a PRIMO rule
graph which are still ambiguous after the numeric bounds have been propagated; let
IC(p) = LB COSLB (o) 5 1C(p,) is a measure of the current approximation of the
information content in p;. An optimal admissible labeling is an admissible labeling that
minimizes the objective function:

2 MCE:) - LB®)|

L B(p;), the final certainty associated with p;, will have the value of L B*(p;) or LB~ (p,).
Thus the objective function is a measure of the distance of our current numerical approx-
imation to the final value. We want to minimize this distance.

Once we have made the commitment to coercing ambiguous values to either 0 or 1,
solving the problem of finding extensions reduces to propositional satisfiability. Extend-
ing the problem we consider to that of weighted satisfiability, gives us a means of finding
a preferred extension. Weighted satisfiability is defined formally below:

SThis term is equivalent to L2205 (p)
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Let C' be a weighted CNF formula, A; C;, where each clause, C; =V, p;,
has a corresponding positive weight, w;. Let P be a truth assignment of
the propositional variables, p;, that appear in C. The weight of P is the
sum of the weights of the clauses that are made false by P. The weighted
satisfiability problem is to find the minimum weighted truth assignment.

The optimal admissible labeling problem can be encoded as the weighted satisfiability
problem in the following way:

Convert the propositional form of the given PRIMO graph into clausal form. Assign
infinite weight to each of the resulting clauses. Next, for each ambiguous nonmonctonic
premise of the form —| pi, generate two clauses:

1. p with weight IC(Px) - LB—(p.)
2. -p; with weight LB*(p;) — IC(p0).

The first clause represents the cost of making p; false, the second the cost of mak-
ing p; tiue. It is easy to see that the original graph has an admissible labeling if and
only if there is a finitely weighted truth assignment for the corresponding instance of
weighted satisfiability, and that the weighted truth assignment corresponds to minimizing
the objective function given above.

6.4 Example

In this section we demonstrate the above ideas on a simple example. Consider the
following rules:

Bird A - .2 |Hops —* Flies

Emu A -{.2|Flies — Hops

Flemu —* Emu

Emu —! Bird

Flemu —' Flies

Let’s say we are given that LB(Bird) = LB(Emu) = 1, and LB(Flemu) = 0.

Then after running the PB algorithm, we obtain that the interval for Flies is [0, .8],
and for Hops is [0, .9]. Converting the above rules and inputs into propositional calculus
gives us two admissible labelings, Flies A~ Hops, or ~ Flies A Hops. The optimal one
is the latter, which gives us the final labeling: LB(Flies) = 0, LB(Hops) = .9.

Note that if we had started with LB(Emu) = .8, instead of 1, then the optimal labeling
would have been: LB(Flies) = .8, LB(Hops) = 0.

6.5 Algorithms and Heuristics
In Section 6.3.3 we showed how the problem we are concerned with can be posed as one

of weighted satisfiability. Since this problem is intractable in general, we must make com-
promises if our system is to perform reasonably on nontrivial instances. The alternatives
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we consider include constraining the classes of problems we will allow (Section 6.5.1)
or sacrificing optimality of solutions (Section 6.5.2).

6.5.1 Nonserial Dynamic Programming

One of the most interesting possibilities involves restricting our attention to classes of
formulae which, while still intractable, have satisfiability algorithms which theoretically
take much less than O(2") time, where n is the number of propositional variables. In
[RH86], Hunt and Ravi describe a method based on nonserial dynamic programming and
planar separators (see [BB72] and [LT80}, respectively) which solves the satisfiability
problem in O(2V™) time for a subclass of propositional clauses that can be mapped in
a natural way to planar graphs®. In [Fer88] Fernandez-Baca discusses an alternative
construction for planar satisfiability and an extension to weighted satisfiability. He also
presents a similar algorithm for another interesting class of problems, where the graph
corresponding to the set of clauses has bounded bandwidth. Hunt [Hun89] has shown
that similar results hold for a large class of problems which have graphs with bounded
channel width. Each of these is in some sense a measure of the complexity of the clausal
form of the problem. If they are much smailer than the number of variables in the
problem, weighted satisfiability can be solved relatively quickly for large instances.

6.5.2 Heuristics

Depending on the size of the graph and the deadline imposed on the system by the
outside world, we might not afford the time to find the optimal extension. Under these
circumstances, we need to use a heuristic that, without guaranteeing an optimal solution,
will find a satisficing solution while exhibiting reasonable performance characteristics.’

The following heuristics can be applied to the PRIMO graph, after the propagation
of bounds, or to the problem encoded in terms of weighted satisfiability.

As initial conditions we assume a set of nodes P, which is a subset of the original
set of nodes in the graph. Each element of P has an associated pair of lower and upper
bounds. We sort the elements in P such that | IC(p;) ~ 0.5 |>| IC(pis1) — 0.5 | . By
sorting the elements in P based on decreasing information content, we are trying to first
coerce the labeling of those nodes for which we have the strongest constraints.

We can now use a variety of search strategies, such as the iteratively deepening hill-
climbing search, or beam-search to (locally) minimize the objective function defined in
Section 6.3.3, subjected to the consistency constraints dictated by the graph topology.

Tt is shown in [Lic82] that the satisfiability problem for this class is NP-complete {GJ79]. Thus the
existence of a polynomial time decision procedure is highly unlikely.

7As any other heuristic, there is no guarantee that its worst case performance can improve that of an
exhaustive search.
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6.5.3 Strongly Connected Components

Thus far we have presented our algorithms as if they were to work on the entire PRIMO
rule graph. Even the heuristic presented would bog down on rule graphs of realistic size.

As a result, several optimizations are essential in practice, even though they do not
affect the theoretical worst case complexity. The entire initial graph can be decomposed
into strongly connected components (SCCs), which are attacked one at a time (using
whatever algorithm or heuristic is deemed apropriate) “bottom up™.

This idea was first used for JTMSs in [Goo87]. As in the JTMS, there is no guarantee
that one can avoid backtracking: alow level SCC may have several solutions, and a higher
SCC dependent upon it may become unsolvable if the wrong choice is made lower down.
However, this strategy seems likely to be helpful in practice.

6.6 Conclusions

We have presented an approach that integrates nonmonotonic reasoning with the use of
quantitative information as a criterion for model preference. This represents a major
departure from exisiting paradigms, which normally fail to account for one or the other.
We have also identified several methods for coping with the inherent intractability in-
volved in such reasoning. We feel that this is a promising approach, but this wor'; is at a
preliminary stage. As a result, there are a number of questions which we are cousidering
now. We list some of them below.

¢ We have previously noted that there are some correspondences between the PRIMO
rule graph and that of the JTMS. Their exact relationship (if indeed one exists) is
not well understood and needs to be explored.

o The dynamic programming algorithms discussed in Section 6.5.1 may help us to
deal with large problem instances under certain structural constraints on the allowed
propositional formulae. The results discussed, however, are based on asymptotic
bounds. We have begun to implement these algorithms, but do not know at this
point whether they will perform satisfactorily in practice. We also need to determine
how well the heuristics we have described will perform.

¢ It may be advantageous to preprocess the graph prior to run time. For instance,
breaking up the graph into SCCs may also allow us to do some precomputation at
compile ime. In addition to generating the SCCs, it might be possible to transform
them into canonical forms which would yield more efficient run-time algorituns.
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Abstract

We solve an open problem stated in [KS89], showing that aithough fast algonthms
exist for determining whether a literal holds in a propositional default theory in which
the propositional theory consists solely of literals and the default rules are Horn
(see [KS89]), and exist for deciding satisfiability of propositional Hom theories,
the two cannot be combined without introducing intractability. In particular, we
show that when the propositional theory of a default theory allows Hom clauscs, the
membership problem becomes intractable even when the default rules in the theory
are restricted to being propositional normal unary defauit rules, a strong restriction
of propositional Hom default rules.

We also present several related results, showing that the entailment problem,
the enumeration problem, and the problem of determining whether there exists an
extension that “satisfies” some specified number of the default rules are all intractable
for these restricted default theornes.

7.1 Introduction

One of the central concerns of artificial intelligence research involves developing useful
models of how one might emulate on computers the ‘common-sense’ reasoning in the
presence of incomplete information that people do as a matter of course. Traditional
predicate ivgics, developed for reasoning about mathematics, are inadequate as a formal
framework for such research in that they are inherently monotonic: if one can derive a
conclusion from a set of formulae then that same conclusion can also be derived from
every superset of those formulae. It is argued that people simply don't reason this way:
we are constantly making assumptions about the world and revising those assumptions
as we obtain more information (see [McC77] or [Min75], for instance).

Many researchers have proposed modifications of traditional logic to model the ability
to revise conclusions in the presence of additional information (see, for instance, [McC86].
[Moo083], [Poo86]). Such logics are called nonmonotonic. Informally, the common idea
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in all these approaches is that one may want to be able to “jump to conclusions” that
might have to be retracted later. While a detailed discussion of nonmonotonic logics is
outside the scope of this paper, a good introduction to the topic can be found in [Eth88],
and a number of the most important papers i the field have been collected in [Gin87].

One of the most prominent of the formal approaches to nonmonotonic reasoning,
developed by Reiter ([Rei80]), is based on default rules, which are used to model decisions
made in prototypical situations when specific or complete information is lacking. Reiter’s
default logic is an extension of first order logic that allows the specification of default
rules, which we will summarize shortly. Unfortunately, the decision problem for Reiter’s
default logic is highly intractable in that it relies heavily on consistency checking for
processing default rules, and is thus not even semi-decidable (this is not a weakness of
Reiter’s logic alone; it is common to most nonmonotonic logics). This precludes the
practical use of Reiter’s default logic in most situations.

The motivation for searching for computationally tractable inference mechanisms
for subclasses of propositional default reasoning is based on the need to reason about
relatively large propositional knowledge bases in which the default structures may be quite
simple. Recent research involving inheritance networks with exceptions is particularly
relevant, and is explored in depth in [Tou86] and in Chapter 4 of [Eth88], where the close
relationship between default logic and inheritance networks with exceptions is explored.

In order to gain computational tractability of reasoning in default logic, one must
restrict expressiveness considerably. If one simply restricts the logic to reasoning about
arbitrary propositions, the resulting decision problems are at least as hard as deciding
standard propositional logic, regardless of any restrictions on the types of default rules
allowed. Since the satisfiability problem is intractable for propositional logic, one must
consider further restrictions.

Recently, Kautz and Selman ([KS89]} investigated a number of restricted default log-
ics defined over subsets of propositional calculus with various restrictions on the syntactic
form of default rules allowed. They described a partial order of such restrictions, and an-
alyzed the complexity of several problems over this partial order when the propositional
theory is restricted to a set of literals. Several restrictions on the syntactic form of de-
fault rules were shown to result in polynomial-time tests for determining whether certain
properties hold given such a restricted propositional theory. In particular, it was shown
that one can decide in polynomial time whether there exists an extension that contains
a given literal when the default rules are restricted to a class they called Horn default
rules. They suggested that the ability to combine such default theories with non-default
propositional Homn theories would be particularly useful, but left open the question of
whether the membership problem (i.e., determining whether there exists an extension of
a given default theory containing a specified literal) for such a combination of theories is
tractable. One of the main theorems of this paper shows that a strong restriction of this
problem is NP-complete.

The remainder of this paper is organized as follows: we begin with a brief descrip-
tion of Reiter’s Jefault logic, followed by a short overview of NP-completeness, and a
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presentation of the restrictions considered by Kautz and Selman. In Section 7.3 we prove
that it is NP-complete to determine whether a default theory consisting of non-default
propositional Hom clauses together with normal unary default rules contains a given lit-
eral. In Section 7.4, we discuss several related results. Finally, we summarize the results
presented and discuss areas for further research.

7.2 Preliminaries

7.2.1 Reiter’s Default Logic

For a detailed discussion of Reiter’s default logic the interested reader is referred to
[Rei80]. In this section we will simply review some of the immediately pertinent ideas.

A default theory is a pair (D, W), where W is a set of closed well-formed formulae
(wffs) in a first order language and D is a set of default rules. A default rule consists of
a triple < a, 3,7 >, where

« is a formula called the prerequisite,
3 is a set of formulae called the justifications, and

~ is a formula called the conclusion.

Informally, a default rule denotes the statement “if the prerequisite is true, and the
justifications are consistent with what is believed, then one may infer the conclusion.”

Default rules are written

a:p
~
If the conclusion of a default rule occurs in the justifications, the default rule is said to
be semi-normal; if the conclusion is identical to the justifications the rule is said to be
normal.

A default rule is closed if it does not have any free occurrences of variables, and a
default theory is closed if all of its rules are closed.

The maximally consistent sets that can follow from a default theory are called ex-
tensions. An extension can be thought of informally as one way of “filling in the gaps
about the world.”

Formally, an extension E of a closed set of wffs T is defined as the fixpoint of an
operator , where (T') is the smallest set satisfying:

wcm,
(T) is deductively closed,

for each default rule d € D, if the prerequisite is in (T), and T does not contain the
negations of any of the justifications, then the conclusion is in (T).
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Since the operator is not necessarily monotonic, a default theory may not have any
extensions. Normal default theories do not suffer from this, however (see [Rei80]), and
always have at least one extension.

There are several important properties hat may hold for a default theory. Given a
default theory (D, W), perhaps together with a literal ¢, one might want to determine the
following about its extensions:

Existence Does there exist any extension of (D, W)?

Membership Does there exist an extension of (D, W) that contains ¢? (This is called
goal-directed reasoning by Kautz and Selman.)

Entailment Does every extension of (D, W) contain ¢? (This is closely related to
skeptical reasoning, where a literal is believed if and only if it is included in all
extensions.)

7.2.2 NP-complete Problems

NP is defined to be the class of languages accepted by a nondeterministic Turing machine
in time polynomial in the size of the input string. An important subset of NP is the class
P, the class of languages accepted by a deterministic Turing machine in polynomial time.
These problems*® comprise those we usually consider tractable, in that the time needed
to solve them is polynomially related to the problem size.

The “hardest” languages in NP are called NP-complete: NP-complete languages share
the property that all languages in NP can be transformed into them via some polynomial
time transformation. To show that a problem in NP is NP-complete one must demonstrate
a polynomial-time transformation of an instance of a known NP-complete problem to an
instance of the problem under consideration in such a way that a solution to one indicates
a solution to the other. The known NP-complete problem we will use in this paper is
called 3SAT, and is stated formally as follows:

3-SATISFIABILITY (3SAT)

Instance: A finite set C = {c1,...,cm} of propositional clauses, each of which consists
of exactly 3 literals (propositional variables or their negations).

Question: Does there exist a truth assignment that satisfies C?

The theory of NP-completeness is relatively well-understood; for a thorough and
readable discussion of the topic the interested reader is referred to [GJ79). The fastest
known deterministic algorithms for NP-complete problems take time exponential in the
problem size. It is not known whether this is necessary: one of the central open problems
in computer science is whether P = NP. Most researchers believe that P ¥ NP, and that

*NP-completeness is often discussed in terms of decision problems rather than languages, although the
two are interchangeable.
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NP-complete problems really do need exponential time to solve. Thus these problems
are considered intractable, since if P ¥ NP, we cannot hope to solve instances of them
with inputs of nontrivial size.

Demonstrating the NP-completeness of a problem does not necessarily imply that it
it cannot be solved in practice: sometimes (e.g., the Traveling Salesman Problem) good
polynomial approximation algorithms have been devised. Unfortunately, it is not clear
what might comprise a reasonable approximation to an extension in a default theory.
Even when approximation algorithms do not apply, there are often important subclasses
of hard problems that can be solved efficiently (deciding satisfiability of propositional
Hom clauses is a good example of such a situation). Alternatively, perhaps many of the
instances that may arise in practice will have structural properties that can be used to
gain tractability. Knowing that a problem is NP-complete is important, however, ir. that
it suggests that exact solutions are unlikely to be obtainable for nontrivial instances, and
that some additional restrictions may need to be made on the structure of the problem
being considered.

7.2.3 A Taxonomy of Defauit Theories

In [KS89], Kautz and Selman presented a taxonomy of propositional default theories.
They restricted W to contain only propositional literals (i.e., propositional variables and
their negations), and restricted default rules to be semi-normal rules in which the precon-
dition, justifications, and conclusions of each default rule consisted of conjunctions of
literals (this restriction makes consistency checking a simple task). They also considered
the following further restrictions on the default rules allowed.

Unary The prerequisite of each default rule must be a positive literal, and the conclusion
must be a literal. If the consequence is positive, the justification must be the con-
junction of the consequence and a single negative literal; otherwise, the justification
must be the consequence.

Disjunction-Free Ordered The reader is referred to [Eth88] for a formal definition of
ordered theories; intuitively, in ordered theories the literals can be ordered in such
a way that potentially unresolvable circular dependencies cannot occur.

Ordered Unary These combine the restrictions of the first two theories described above.
Kautz and Selman remark that these theories appear to be the simplest necessary
to represent inheritance hierarchies with exceptions ([Tou861}).
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Disjunction-Free Normal These are disjunction-free ordered theories in which the con-
sequence of each default rule is identical to the justification.

Horn The prerequisite literals in these default rules must each be positive, and the
justification and consequence are identical, each consisting of a single literal.

Normal Unary The prerequisite in each of these default rules consists of a single positive
literal, the conclusion must be a literal, and the justification must be identical to the
consequence. These form the most simple class of default rule that is considered
in [KS89].

These restricted theories are related in a partial order as shown in Figure 7.1 below.

Disjunction-free

DF-Ordered Unary
DF-Normal
Horn Ordered Unary

Normal Unary

Figure 7.1: Kautz and Selman’s hierarchy of restricted default theories.

7.3 Main Results

Quite often, a default theory will have multiple extensions, and one may want to restrict
examination to a limited number of them. One important measure of which extensions to
consider may be the inclusion of some particular propositions. As mentioned above, this
is variously referred to as goal-directed reasoning and the membership problem. Figure
7.2 summarizes Kautz and Selman’s results with regard to the taxonomy they described.
In particular, it is shown that for the class of Hom default theories, goal-directed reasoning
can be done in linear time when the propositional theory consists of propositional literals.
They suggest that although this is somewhat useful, it would be much more interesting if
one could combine such default rules with propositional Hom theories efficiently. More
formally, one would like to solve the following problem:
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Disjunction-free

DF-Ordered Unary

DF-Normal

Ordered Unary
NP-hard

Linear
Normal Unary

Figure 7.2: The complexity of goal-directed reasoning in the restricted default theories
considered by Kautz and Selman.

HorN CLAUsSES WITE NORMAL UNARY DEFAULTS

Instance: A finite set H of propositional Hom clauses, together with a finite set D of
normal, unary, propositional default rules, and a distinguished literal q.

Question: Does there exist an extension of (D, H) that contains the literal ¢ ?
In this section we show that this problem is intractable, proving:
Theorem 1 HorN CLAUSES WITR NORMAL UNARY DEFAULTS is NP-complete.

Proof: It is not difficult to demonstrate membership in NP: although the extension may
be too large to describe explicitly, it suffices to provide the original set of Homn clauses,
together with those default rules that were applied, and verify that the default rules form
a maximal set that can actually be applied consistently. Since these are disjunction-free,
this can be done efficiently.

To demonstrate NP-hardness we transform an instance of 3SAT to one of HORN
Crauses wiTH NorRMAL UNARY DEFAULTS as follows. Given an instance / of 3SAT,
we begin by converting / into a new set of clauses consisting of a set # of Horn clauses
together with a set P of clauses each of which contain exactly two literals, each occurring
positively. To do this we simply place each clause in / that contains at most one positive
literal into H; the remaining clauses contain either two or three positive literals. For each
of the remaining clauses, choose one of the positive literals (call it z), introduce a new
variable Z and the clauses

(mz V ~1),
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which is a Hom clause and i< placed into H. and
(z V3),

which is placed into P. These two clauses taken together are the clausal form of the
formula
(z & -3%).

Finally, replace the occurrence of z in the original clause with —~Z. The resulting clause
has one less positive literal than the original; if it is now a Hom clause, place it in
H. Otherwise repeat the replacement process to remove one of the remaining positive
literals. Note that since equivalence of each literal z and the new corresponding literal
-2 is enforced by the added clauses, every satisfying assignment for the original formula
can be extended easily to a satisfying assignment for the new formula, and vice versa.
The transformation has the property, however, that there are more falsifying assignments
for the new formula than for the original. Note also that this transformation only results
in a linear increase in the size of the problem.

At this point, we have a set H of Homn clauses, which, together with one more
clause we will add later, will comprise the propositional part of the default theory we
are constructing. Since the clauses in P are non-Hom, they cannot be included in the
propositional part of the theory. Thus, we must construct a set of normal unary default
rules D to model the clauses in P. This is done as follows.

For each variable a that appears in some clause in P, we introduce the default rule

. a
a

into D. Let us assume that P contains m clauses, i.e., P = {c1,...,¢n}. Each of these
is of the form ¢; = (a Vv b), where a and b are positive literals. For each such clause,
introduce a new propositional variable ¢;, and introduce the following default rules into
D:
a:g; . b Y
—_— 2. —— 3. —

qi g 'l
Once this is done for each of the clauses in P, we introduce one additional new variable
and a final Hom clause into H to complete the construction:

1.

Hy=(~q1V-@V...V-qnVQ

This phase of the transformation also results in at most linear growth in problem size.
We now show that there exists an extension of (D, H) that contains ¢ if and only if the
original formula F is satisfiable.

(=). Suppose F is satisfiable. Since we replaced the clauses in P with a set of default
rules, we must show that we can, given a satisfying assignment a for F, construct an
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evtensinn of (D, H) that contains ¢. It is easy to see that « can be extended to an
assignment ¢’ in which those new variables introduced in transforming F to the sets H
and P are assigned truth values so that all the clauses in H U P are satisfied, and in
fact, that the assignment of values to the new variables is completely determined by a.
We use this assignment as the basis for the extension we will construct. We proceed as
follows. Each of the clauses in P must have had one of its variables assigned the value
true by o'. For each of these clauses ¢; = (a V b) we observe that if a is assigned the
value true by a’, we can apply the default rules

. a a:g;

— —

a qs

We can proceed similarly if b is assigned the value true. Note that since there are no
propositional constraints on the variables ¢; other than the single Hom clause we added,
we can always consistently add these. When this has been done for each of the clauses,
it follows from the Horn clause H, that the set we have specified also contains ¢. It is a
straightforward matter to confirm that this set can be augmented via deductive closure to
form an extension of (D, H) that includes g, since no other default rules can be applied,
and the only new Hom clause added (H,) is also satisfied.

(<). Suppose that there exists an extension of (D, H) that includes q. Since H contains
only non-unit Horn clauses, it is easily seen to be consistent, thus it has only consistent
extensions (see {Rei80]). Thus we need only show that each formula from P can be
satisfied consistently with H. Since we are given that ¢ is contained in the extension, we
can infer from the clause H, that each of the {¢;|1 < i < m} are also in the extension
(otherwise the extension would contain ¢; for some 1 < i < m, and the clause H, would
be satisfied without forcing ¢ to be true). For an arbitrary clause ¢; = (a Vv b) from P, the
default rules
a: g b: g
g gi

are the only default rules that could have admitted g; into the extension. The prerequisites
of these default rules ensure that at least one of a,b is also in the extension (they may
have been included using the default rules

‘a 0 b
a b

or as a consequence of including other literals). Thus, for each of the clauses in P at
least one of its literals is in the extension. Since this extension is consistent with H, the
set P U H is also consistent, and the theorem follows, O
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7.4 Related Results

In this section we present several results that can be obtained by making minor modifi-
cations to the proof presented above.

Theorem 2 It is co-NP-complete to determine whether a specified literal q holds in every
extension of a default theory (D, H), where H is a finite set of propositional Horn clauses,
and D is a finite set of normal, unary, propositional default rules.

Proof (skeich): The transformation above is modified by adding a default rule

Mt/
—q

to D, causing the literal —~q to be included explicitly in every extension if and only if the
original instance of 3SAT is unsatisfiable, and the result follows. O

Theorem 3 It is #-P-complete to count those extensions of a default theory (D, H) con-
taining a specified literal q, where H is a finite set of propositional Horn clauses, and D
is a finite set of normal, unary, propositional default rules.

Proof (sketch): We modify the original transformation by adding default rules corre-
sponding to each of the original variables and their negations, rather than just those in P,
thus eliminating “don’t care” situations that might otherwise arise in extensions, in which
for some propositional variables neither the variable or its negation are in the extension.
This modified transformation induces a situation in which each extension containing the
specified literal ¢ corresponds 1o a unique satisfying truth assignment for the original
formula, and vice versa. The result follows immediately. O

The problems addressed in Theorem 2 and Theorem 3 are closely related to skeptical
reasoning discussed in [Tou86]. A skeptical reasoning system accepts a proposition only
if it is included in every extension. It was shown in {KS89] that normal unary default
theories have an O(n?) algorithm for determining whether a proposition holds in all
extensions. Theorem 2 demonstrates that if one extends the theory to allow Hom clauses
in the non-default part, such skeptical reasoning becomes intractable. Theorem 3 shows
that for such default theories it is also intractable to determine whether a proposition holds
in most extensions. As a result, even approaches approximating skeptical reasoning
by accepting propositions that are included in most extensions are intractable in these
theories.

It is also interesting to note that the construction we describe has the property that for
each clause appearing in P, exactly one of the literals in that clause will be true in a given
satisfying assignment. The next theorem shows that even determining whether there is
an extension that “satisfies” a given number of one's default rules is NP-complete. Since
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Jefauli rulcs ars cften used to exnrecc descriptions of “preferred interpretations,” such
queries provide an indication of how close one might be able to get to one’s preferences.

Theorem 4 /i is NP-complete to determine, given a default theory (D, H), where H is a fi-
nite set of propositional Horn clauses, and D is a finite set of normal, unary, propositional
default rules with empty prerequisites and with positive justifications and conclusionst
and a positive number k, whether t.cre is an extension of D, H) that contains the con-
sequences of at least k of the default rules in D.

Proof: The construction of H and P is exactly as in the proof of Theorem 1 above.
Note that for each clause (a V b) in P there is a corresponding clause (—a Vv -b) in H.
This forces exactly one of a and b to be true in any satisfying assignment for H U F.
In order to make sure that applying a default rule corresponds to satisfying exactly one
clause from £, we must ensure that no variable appears in more than one clause in P.
To do this, we proceed as follows. If a variable a appears in two clauses in P, introduce
a new variable a’, Hom clauses
(~aVva)

and
(-‘a, V' 0.),

and replace one occurrence of a in P by a’. When this process is completed, each
variable appearing in P appears exactly once in P. Next, for each literal ¢ appearing in

P add the default rule
ta

a

Let m be the number of clauses in P. If the original formula is satisfiable then we can
easily extend this to an extension in which exactly m of the default rules were applied,
since exactly one of the variables in each clause from P can be true. Similarly, since it
is inconsistent for an extension to contain both variables from any clause in P, if there
is an extension in which exactly m default rules were applied, exactly one variable from
each clause in P is true. Since the clauses in A are consistent, the entire formula is
satisfiable. O

7.5 Discussion

We have shown that several problems associated with restricted propositional default
theories are intractable, despite the fact that there exist tractable algorithms for their
component parts. These default theories are quite simple, and our results show that
unless P = NP, in order to effectively reason in default theories one must live with
constraints that are quite limiting, some of which are described in [KS89].

"These form the most simple possible type of default rule, expressing the desire to believe some propo-
sitional variable whenever it is consistent to do so.
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The most promising area for further study involves identifying different restrictions
that yield tractable reasoning methods without sacrificing expressibility to the point where
only trivial default theories can be reasoned about. We are currently investigating several
possibilities, and will present a number of new results related to the problem of reasoning
in restricted propositional default theories in a forthcoming paper.
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Abstract

We introduce a hierarchy of classes of propositional default rules, and character-
ize the complexity of typical problems in those classes under various assumptions
about the underlying propositional theory. This work significantly extends both that
presented in [KS89] and in [Sti89].

8.1 Introduction

One of the central concems of artificial intelligence research involves developing useful
models of how one might emulate on computers the ‘common-sense’ reasoning in the
presence of incomplete information that people do as a matter of course. Traditional
predicate logics, developed for reasoning about mathematics, are inadequate as a formal
framework for such research in that they are inherently monotonic: if one can derive a
conclusion from a set of formulae then that same conclusion can also be derived from
every superset of those formulae. It is argued that people simply don’t reason this way:
we are constantly making assumptions about the world and revising those assumptions as
we obtain more information (see [McC77] or [Min75], for instance). Many researchers
have proposed modifications of traditional logic to model the ability to revise conclusions
in the presence of additional information (see, for instance, [McC86], {Mo083], [Poo86]).
Such logics are called nonmonotonic. Informally, the common idea in all these approaches
is that one may want to be able to “jump to conclusions” which might have to be retracted
later. While a detailed discussion of nonmonotonic logics is outside the scope of this
paper, a good introduction to the topic can be found in [Eth88], and a number of the
most important papers i the field have been collected in [Gin87].

One of the most prominent of the formal approaches to nonmonotonic reasoning,
developed by Reiter ([Rei80]), is based on default rules, which are used to model decisions
made in prototypical situations when specific or complete information is lacking. Reiter’s
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default logic is an extension of first order logic which allows the specification of default
rules, which we will summarize shortly. Unfortunately, the decision problem for Reiter’s
default logic is highly intractable in that it relies heavily on consistency checking for
processing default rules, and is thus not even semi-decidable (this is not a weakness of
Reiter's logic alone; it is common to most nonmonotonic logics). This precludes the
practical use of Reiter’s default logic in most situations.

The motivation for searching for computatonally tractable inference mechanisms
for subclasses of propositional default reasoning is based on the need to reason about
relatively large propositional knowledge bases in which the default structures may be quite
simple. Recent research involving inheritance networks with exceptons is particularly
relevant, and is explored in depth in {Tou86] and in Chapter 4 of [Eth88], where the close
relationship between default logic and inheritance networks with exceptions is explored.

In order to gain computational tractability of reasoning in default logic, one must
restrict the expressiveness considerably. If one simply restricts the logic to reasoning
about arbitrary propositions, the resulting decision problems are at least as hard as de-
ciding standard propositional logic, regardless of restrictions on the types of default rules
allowed. Since the satisfiability problem is intractable for propositional logic, one must
consider further restrictions. Recently, Kautz and Selman {KS89] and Sdllman {Sti89)
have investigated default logics defined over subsets of propositional calculus with var-
ious restrictions on the syntactic form of default rules allowed. In [KS89], Kautz and
Selman described a partial order of such restrictions, and discussed the complexity of
several problems over this partial order when the propositional theory is restricted to a set
of literals. Several of these restrictions were shown to result in polynomial-time tests for
determining whether cenain properties hold given such a restricted propositional theory.
In particular, it was shown that one can decide in polynomial time whether there exists
an extension which contains a given literal when the default rules are restricted to a class
they called Horn default rules. They suggested that the ability to combine such default
theories with non-default propositional Hom theories would be particularly useful, but
left open the question of whether the membership problem (i.e., determining whether
there exists an extension of a given default theory containing a specified literal) for such
a combination of theories is tractable. In {Sti89], we showed that a restriction of this
problem is NP-complete, and presented several related results.

The remainder of this paper is organized as follows: we begin with a bref descrip-
tion of Reiter's default logic, followed by a short overview of NP-completeness, and a
presentation of the restrictions considered by Kautz and Selman. In Section 8.3 we intro-
duce a hierarchy of classes of propositional default rules which significantly extends that
presented in [KS89]. Next, we characterize the complexity of the membership problem
for these classes. Finally, we summarize the results presented in this paper, and discuss
related results and future work.
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8.2 Preliminaries

8.2.1 Reiter’s Default Logic

For a detailed discussion of Reiter’s default logic the interested reader is referred to
[Rei80]. In this section we will simply review some of the immediately pertinent ideas.
A default theory is a pair (D, W), where W is a set of closed well-formed formulae
(wffs) in a first order language and D is a set of default rules. A default rule consists
of a triple < a,3,y >: a is a formula called the prerequisite, 3 is a set of formulae
called the justifications, and v is a formula called the conclusion. Informally, a default
rule denotes the statement “if the prereauisite is true, and the justifications are consistent
with what is believed, then one may infer the conclusion.” Default rules are written

a:f

——

y

If the conclusion of a default rule occurs in the justifications, the default rule is said to
be semi-normal; if the conclusion is identical to the justifications the rule is said to be
normal. A default rule is closed if it does not have any free occurrences of variables,
and a default theory is closed if all of its rules are closed.

The maximally consistent sets that can follow from a default theory are called ex-
tensions. An extension can be thought of informally as one way of “filling in the gaps
about the world.” Formally, an extension E of a closed set of wffs T is defined as the
fixpoint of an operator I', where I'(T) is the smallest set satisfying: .

o« W C D),
e I'(T) is deductively closed,

e for each default d € D, if the prerequisite is in I'(T), and T does not contain the
negations of any of the justifications, then the conclusion is in I'(T).

Since the operator I is not necessarily monotonic, a default theory may not have any
extensions, Normmal default theories do not suffer from this, however (see [Rei80)), and
always have at least one extension.

There are several important properties that may hold for a default theory. Given a
default theory (D, W), perhaps together with a literal ¢, one might want to determine the
following about its extensions:

Existence Does there exist any extension of (D, W)?

Membership Does there exist an extension of (D, W) which contains ¢? (This is called
goal-directed reasoning by Kautz and Selman.)

Entailment Does every extension of (D,W) contain ¢? (This is closely related to
skeptical reasoning, where a literal is believed if and only if it is included in all
extensions.)
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8.2.2 NP-complete Problems

NP is defined to be the class of languages accepted by a nondeterministic Turing machine
in time polynomial in the size of the input string. The “hardest” languages® in NP are
called NP-complete: all such languages share the property that all languages in NP can
be transformed into them via some polynomial time transformation. To show that a
problem in NP is NP-complete one must demonsirate a polynomial-time transformation
of an instance of a known NP-complete problem to an instance of the problem under
consideration in such a way that a solution to one indicates a solution to the other. For
a thorough discussion of the topic the interested reader is referred to [GJ79]. The fastest
known deterministic algorithms for NP-complete problems take time exponential in the
problem size. It is not known whether this is necessary: one of the central open problems
in computer science is whether P = NP. Most rescarchers believe that P # NP, and that
NP-complete problems really do need exponential time to solve. Thus these problems
are considered intractable, since if P # NP, we cannot hope to solve instances of them
with inputs of nontrivial size.

Demonstrating the NP-completeness of a problem does not necessarily suggest that
it cannot be solved in practice: sometimes (e.g., the Traveling Salesman Problem) good
polynomial approximation algorithms have been devised; unfortunately, it is not clear
what might comprise a reasonable approximation to an extension in a default theory.
Even when approximation algorithms do not apply, there are often important subclasses
of hard problems which can be solved efficiently (deciding satisfiability of propositional
Hom clauses is a good example of such a situation). Alternatively, perhaps many of the
instances that may arise in practice will have structural properties which can be used to
gain tractability. Knowing that a problem is NP-complete is important, however, in that
it suggests that exact solutions are unlikely to be obtainable for all nontrivial instances,
and that some additional restrictions may need to be made on the structure of the problem
being considered.

8.2.3 Restricted Default Theories

If practical reasoning systems are to be developed, one cannot ignore computational
complexity. Each of the questions mentioned above is at least as hard as deciding the
underlying theory W. Thus, if W consists of arbitrary first-order formulae, none of
these questions is even semi-decidable, and a practical systemn must consider stronger
restrictions. If W is restricted to arbitrary propositional formulae, each of the questions
require deterministic time proportional to that needed to determine propositional satis-
fiability (approximately 2" where n is the number of atoms occurring in W, using the
best algorithms currently known). It is unlikely that algorithms that perform significantly
better will be developed in the future, under the assumption that p ¥ NP. Thus, to

*NP-completeness is often discussed in terms of decision problemns rather than languages, although the
two are interchangeable.
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guarantee efficient answers to the questions posed above, we must consider even stronger
restrictions on W. The propositional theories we will consider are described below.

Propositional literals: W consists of propositional atoms and their negations. In [KS89],
Kautz and Selman assume this restriction.

Horn clauses: W consists of a conjunction of propositional clauses, each of which con-
tains at most one positive literal.

2-literal clauses: W consists of a conjunction of propositional clauses, each of which
contains at most 2 literals. This restriction is assumed in network default theories,
described by Etherington in [Eth88].

Each of these restricted propositional theories is known to be decidable in linear timef,
providing us with a good starting point for building simple default theories. Note that
while the first restriction forms a subset of each of the others, the second and third
are incomparable with respect to the formulae they contain. In subsequent sections we
will examine the complexity of reasoning in a number of restricted default theories.
We will consider default theories for which W falls into one of the three subclasses of
propositional formulae presented above. For each of these, we will consider a number of
restrictions on what classes of default rules are allowed. These restrictions are discussed
below.

8.2.4 Prior Work on Restricted Default Theories

In (KS89], Kautz and Selman presented a taxonomy of propositional default theories.
They restricted W to contain only propositional literals, and restricted default rules to
be semi-normal rules in which the precondition, justifications, and conclusions of each
default rule consisted of conjunctions of literals (this restriction makes consistency check-
ing a simple task). They also considered the following further restrictions on the default
rules allowed.

Unary The prerequisite of each default must be a positive literal, and the conclusion must
be a literal. If the consequence is positive, the justification must be the conjunction
of the consequence and a single negative literal; otherwise, the justification must
be the consequence.

Disjunction-Free Ordered We provide a formal definition of ordered default theories
below; intuitively, in disjunction-free ordered theories the literals can be ordered
in such a way that potentially unresolvable circular dependencies cannot occur.

Ordered Unary These combine the restrictions of the first two theories described above?.

'The first case is trivial. For the second and third, see [DG84] and {APT90], respectively.
!Kautz and Selman remark that these theories appear to be the simplest necessary to represent inheritance
hierarchies with exceptions ([Tou86]).
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Disjunction-Free Normal These are disjunction-free ordered theories in which the con-
sequence of each default rule is identical to the justification.

Horn The prerequisite literals in these defaults must each be positive, and the justification
and consequence are each a single literal.

Normal Unary The prerequisite in each of these defaults consists of a single positive
literal, the conclusion must be a literal, and the justification must be identical to the
consequence. These form the most simple class of default rule that is considered
in (KS89].

Ordered default theories are discussed in detail in [Eth87]; some of our results relate to
such theories, so a definition is provided below. First, we need to define two relations
on literals, « and «&. These are defined on closed, semi-normal default theories A
= (D, W), assumed without loss of generality to be presented in clausal form.

1. fae Wthen a=(a; V...V ay), for some n > 1. For a; # aj, let ~a; L a;.

2. Ifé= "——%—A’ €D, let ar,...,ar,B1,...,Bs,71,- .., be the literals appear-

ing in the clauses of «, (3, and v, respectively. Then

(i) For a; € {alv'“ 7ar}vﬂj € {,Bla-'- ,ﬂs}9 let aigﬂj'
(i) For v € {m,...,7:},8j € {Br,....Bs}, let ~; < Bj.

(i) B=P1A...ABm forsome m > 1, Foreach 3i =(Bi1 V...V Bx,) € 8, if
Bi; 7 Biks let =5 ; LBi k-

3. The expected transitivity relationships hold for < and<. Thus,

(i) If a8 and KL, then oK.
(ii) fa g fand § € v, then a € 7.
(iii) If a « 8 and Ly, or agB and B K v, then a K 7.

A semi-normal default theory A = (D, W) is said to be ordered if and only if there is no
literal o such that o € a.

These restricted theories are related in a partial order as shown in Figure 8.1 be-
low. Kautz and Selman examined the extension existence, membership, and entailment
questions for these theories.

Prompted by a gap in the characterization of restricted default theories, in our recent
paper ([Sti89]) we showed that the following problem is NP-complete.

Horn Clauses with Normal Unary Defauits (HC-NU)

Instance: A finite set H of propositional Hom clauses, together with a finite set D of
normal, unary, propositional defaults, and a distinguished literal q.
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Disjunction-free

DF-Ordered Unary .
DF-Normal
Horn Ordered Unary

Normal Unary

Figure 8.1: Kautz and Selman’s hierarchy of default theories.

Question: Does there exist an extension of (D, H) which contains ¢ ?

This result subsumed an open question cited in [KS89]): Kautz and Selman were in-
terested in whether one could add Hom defaults to Hom propositional theories without
introducing intractability. Unfortunately, our result answers this question negatively. It
was also shown that the entailment problem is co-NP-complete for these default theories.

We subsequently exami d even stronger restrictions on the classes of default rules
allowed, hoping to find a ¢: . of rules which could be combined with Hom clauses while
retaining the tractability of propositional Hom clause reasoning. We also examined the
complexity of restricted default reasoning under other restrictions on the propositional
theories allowed, as described above. In the following sections, we report on the results
of this work.

8.3 Expanding the Horizons

Our investigation suggested a richer hierarchy of default rules, most of which result from
disallowing any prerequisites in rules. This corresponds to introducing a “context-free”
element to the reasoning. In this section, we explore the complexity of membership
problems in default theories in which W belongs to one of the classes of formulae listed
above, and in which D belongs either to one of the classes of default rules discussed
above or to one of the following:

Prerequisite-Free Disjunction-free default rules with no prerequisites.
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Prerequisite-Free Unary The prerequisite of each rules is empty, and the conclusion of
each default must be a literal. If the consequence is positive, the justification must
be the conjunction of the consequence and a single negative literal; otherwise, the
justification must be the consequence.

Prerequisite-Free Ordered A prerequisite-free ordered theories is a disjunction-free or-
dered theory in which the prerequisite is empty.

Prerequisite-Free Ordered Unary These combine the restrictions of the first two theo-
ries described above.

Prerequisite-Free Normal These are prerequisite-free ordered theories in which the con-
sequence of each default rule is identical to the justification.

Prerequisite-Free Normal Unary The prerequisite in each of these defaults is empty,
the conclusion must be a literal, and the justification must be identical to the
consequernce.

Prerequisite-Free Positive Normal Unary The prerequisite in each of these defaults
is empty, the conclusion must be a positive literal, and the justification must be
identical to the consequence.

These restricted theories are related in a partial order. The hierarchy is shown in Figure 8.2
below.

Disjunction—{ree

Prerequisite- & DF Ordered Unary

PF Ordered DF Normal Ordered Unary

PF Normal Hom

T~

Normal Unary

PF Normal Unary

PF Positive Normal Unary

Figure 8.2: An expanded hierarchy of default rules.
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8.4 Horn Clause Theories

After showing that the problem HC-NU was NP-complete, we looked for even tighter
restrictions on the defaults allowed which would provide us with tractable default reason-
ing where the propositional theory consisted of Hom clauses. Unfortunately, our results
here were quite negative. The membership problem remains intractable under very tight
restrictions. In particular, for the following problem -

Horn Clauses with Prerequisite-Free Positive Normal Unary Defaults (HC -2)
Instance: A finite set H of propositional Hom clauses, together with a finite set D of
prerequisite-free positive normal, unary, propositional defaults, and a distinguished literal
q.

Question: Does there exist an extension of (D, H) which contains ¢ ?

we prove:

Theorem 1 HC-2 is NP-complete.

Proof: It is not difficult to demonstrate membership in NP: although the extension may
be too large to describe explicitly, it suffices to provide the original set of Hom clauses,
together with those defaults that were applied, and verify that the defaults can actually
be applied consistently. Since these are disjunction-free, this can be done efficiently.

To demonstrate NP-hardness we transform an instance of NOT-ALL-EQUAL SAT-
ISFIABILITY to one of HC-2. NOT-ALL-EQUAL SATISFIABILITY can be stated as
follows.

Given sets S, S52,...,5m, each having 3 members, can the members be
colored with two colors so that no set is all one color?

In (Sha78] it is shown that NOT-ALL-EQUAL SATISFIABILITY is NP-complete. Given
an instance / of NOT-ALL-EQUAL SATISFIABILITY, let £ be the set of all elements
appearing in any S;. For each such element ¢;, introduce the a new propositional atom
o;, and add the following default rule to D:

o

g

Next, for each set S; = {s;,,35,85} in / introduce a new propositional atom S;, and
add the following clauses to W:

(=85, V 85, V msjy)
(=s;, V §;)
(=85 V S;)
(=85 VS))
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Finally, introduce a new propositional atom ¢ and add the following clause to W:
S VoS V...VaS, VY,

This completes the transformation, which results in only a linear increase in the size of
the problem.

We now show that there exists an extension of (D, W) which contains ¢ if and only

if the original instance / of NOT-ALL:EQUAL SATISFIABILITY is satisfiable.
(=>). Suppose I is satisfiable. Then the elements of Z must be two-colorable ir. such a
way that none of the sets S; has all its elements the same color. Let us assume that the
two colors correspond to the truth values true and false. There must exist a satisfying
assignment to the elements of Z in which a maximal number of the elements of X are
colored true. We mugt show that we can, given such a maximal satisfying assignment o
for I, construct an extension of (D, W) which contains q.

We proceed as follows. Each of the sets in S5 must have had at least one of its
elements assigned the value true. For each such element, assign the corresponding atom
in the instance of H-2 the value true. This can be done using the default rules which
were added for each of the set elements. It is not hard to see that this can always be done
consistently: the three element clauses introduced into W will not be contradicted, since
they correspond to at least one of the elements of each set being assigned the value false.
We know that this is the case since we are given a solution to I. Since the assignment
in I is maximal, no other set elements can be made true without forcing at least one of
the sets to have all its elements take the same value. Thus, none of the remaining default
rules can be applied. Since each set has at least one of its members assigned the value
true, each of the propositional atoms S; are true in the extension we are constructing.
(<=). Suppose there exists an extension of (D, W) which contains ¢. It follows that each
of the literals of the form S; : 1 < j < m must be true (this is the only way to force
g to be true). Funthermore, it follows that for cach such literal, §;, at least one of the
literals in the set {s;;, 5}, 8; } must be true. The clause in W of the form

(=8, V 285 V ns5)

forces at least one of these to be false as well. This provides us with at least one element
of each set §; : 1 < j < m which is true, and at least one which is false. From this it is
easy to construct a satisfying assignment for for the instance I of NOT-ALL-EQUAL-
SATISFIABILITY. O

The implications of this result on the hierarchy above are summarized in Figure 8.3
below.

8.5 2-Literal Clauses
A second interesting subclass of propositional formulae is 2-literal clauses. The classes

formed by combining theories consisting of 2-literal clauses with restricted default the-
ories is assumed in network default theories, described by Etherington in [Eth88]. We
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investigated u.. cor.plaxity of membership problems for this class given the above hier-
archy of restrictions on D shown above. For the problem

2-Literal Prerequisite-Free Normal

Instance: A finite set W of propositional 2-literal clauses, together with a finite set D of
prerequisite-free normal propositional defaults, and a distinguished literal q.

Question: Does there exist an extension of (D, W) which contains g ?

we have the following theorem:

Theorem 2 2-Literal Prerequisite-Free Normal can be solved in poltynomial time.

We present an O(n?) algorithm deciding the membership problem for this class in {Sti90].
The basic idea is to exploit the structural property of 2-literal clauses that they resemble
binary relations. As a result, we can effectively compute an implicational “closure” of
the underlying propositional theory. Once this is done, it is relatively easy to determine
whether there is a default rule which can be used to force ¢ to be included in the exten-
sion. For the probelem

2-Literal Normal Unary

Instance: A finite set W of propositional 2-literal clauses, together with a finite set D of
normal unary propositional defaults, and a distinguished literal q.

Question: Does there exist an extension of (D, W) which contains ¢ ? we prove the
following:
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Theorem 3 2-Literal Normal Unary is NP-complete.

Proof: As above, membership in NP is fairly straightforward. To demonstrate NP-
hardness, we transform an instance I of 3-SAT to the membership problem for 2-Literal
Normal Unary defaults. The problem of 3-SAT is stated formally as follows:
3-SATISFIABILITY (3-SAT)

Instance: A finite set C = {et,-..,cm} of propositional clauses, each of which consists
of exactly 3 literals (propositional atoms or their negations).

Question: Does there exist a truth assignment that satisfies C'?

We proceed as follows. Given an instance / of 3-SAT, let C = {C1,(%,...,Cp} be the
clauses appearing in I, and let V be the set of all propositional atoms appearing in any
clause C;. For each clause C; = {l;,l;,,1;} (where each l;, is either a propositional
atom from V or its negation) introduce new atoms {c;,, ¢;, Cj,} together with the clauses

(men Vi)
(nejp ViR)
(nej Vip)

It is important to note that these clauses can never force any of the atoms ¢; to be
assigned the value rrue. If the comresponding literal I; is true, the clause is satisfied; if
it is false, ¢;, must be made false to satisfy the clause. We assume that the clauses are
ordered according to their subscripts (the order in which they appear). We add default
rules to D as follows:
For 1, add the rules

:—cll L C1y P Cly

n a, €1
Next, for each clause C; : 1 < i < m, add the default rules

Ci-1n : Gy Ci-1) - Cip Ci-1n - Ciy
Cq Ciz Ciy
Ci-1y  Ci Ci-h | Ci Ci-1) © Cis
C"‘ Ctz C;’,
Cli-1y © G Ci-1y iy Cli-1p © Ciy
Ciy Ciy Cis

Finally, introduce a new propositional atom ¢ and add the following default rules to D:

Cm; - 4 Cmy ' § Cmy - q

q q q
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This completes the transformation, which results in only a linear increase in the size

of the original problem. It is easy to see that both D and W satisfy the constraints of
the problem statement. We now show that there exists an extension of (D, W) which
contains q if and only if the original instance / of 3-SAT is satisfiable.
(=>). Suppose [ is satisfiable. Then there is some assignment of truth values to the atoms
in I such that at least one literal in each clause is assigned the value true. It follows
immediately that at least one of each of the clauses added to W for each C; is satisfied
via one of the I;, : (1 < k; < 3). Note that this leaves us free to assign the corresponding
atom ¢;, the value true, assuming the default rules can be used to do so. We do this
by apply'ing the correct default rule for clause Cy, making c1, true. This enables us to
use the appropriate default rule for ¢; to make ,, true. This process continues until the
default rules have been used to make some ¢;, true for 1 < i < m. In particular, one
of {cm,,Cmy,Cms} has been made true, which allows us to make g true. Although this
may not yet be an extension since some other c{] s may still be made true consistently, it
is easily seen that any some extension will always result from this process, and that that
extension will contain ¢ (one can also simply add the default rules

L ey, . C, ¢ €y

-CL €, €,

which allows us to make two of these three atoms false in each extension).

(<=). Suppose there exists an extension of (D, W) which contains ¢. Since the only place
that ¢ appears is in the default rules with antecedents from C,,, it must be the case that at
least one of these has been assigned the value true in the extension. As mentioned above,
none of the clauses in W can force these atoms to be assigned true; thus it must be the
case that one of the atoms from C(,,_1) has been made true, allowing one of the default
rules constructed for C(,-1) to be applied. This reasoning can be continued downward
through the default rules for C); in this way we can show that foreach C; -1 <i<m
at least one of the atoms ¢;, : 1 < k < 3 is true in the extension. Since each of the
clauses in W is satisfied in the extension, one can see that for each ¢;, which is true
in the extension, there is a corresponding literal I;, which is also true. We can obtain a
satisfying assignment for [ by making exactly these literals true in /. O

2-Literal Prerequisite-Free Ordered Unary

Instance: A finite set W of propositional 2-literal clauses, together with a finite set D of
prerequisite-free ordered unary propositional defaults, and a distinguished literal q.
Question: Does there exist an extension of (D, W) which contains q ?

Theorem 4 2-Literal Prerequisite-Free Ordered Unary is NP-complete.

Proof: Once again, demonstrating membership in NP is fairly straightforward. To demon-
strate NP-hardness, we transform an instance [ of 3-SAT to the membership problem for
2-Literal Prerequisite-Free Ordered Unary defaults as follows.
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Given an instance / of 3-SAT, let C = {C1,C2,...,Cn} be the clauses appearing in
I, and let V be the set of all propositional atoms appearing in any clause C;. For each
clause C; = {l;,,15,1;} (where each I}, is either a propositional atom from V' or its
negation) introduce a new atom C;. We will also need two other new atoms, ¢ and inc.
For each clause C; : (1 < j < m) we add the following clauses to W:

(C5 v ~ly)
(Cj \' —nljz)
(C; V =iy

and add the following default rules to D:

tinc A ~C;

mce
Next, we add the following default rule to D:

1 q A ninc
q
Finally, for each literal /; that appears in some clause in [, add the default rule:

This completes the transformation. The transformed instance is linearly related to the
original. It is easy to see that (D, W) is 2-Literal Prerequisite-Free Unary. It is also easy
1o see that it is ordered: the strongest (most restrictive) possible relation that can hold
between literals appearing in W (and their complements), is that they are all related to
one another via <. The only literals that appear in semi-normal default rules are the
literals C;,inc, and q. The default rules force C; < inc <€ ¢. Since neither inc nor ¢
appear in W, they cannot be < or £ to any of the cther literals. Thus, in even the most
restrictive relation possible, we have an ordered theory.

We now show that there exists an extension of (D, W) which contains ¢ if and only
if the original instance / of 3-SAT is satisfiable.
(=). Suppose [ is satisfiable. Then there is some assignment of truth values to the atoms
in I such that at least one literal in each clause is assigned the value rrue. It follows
immediately that at least one of each of the clauses added to W for each C; must be
satisfied making the atom C, true (since there is a clause in W of the form

(Civ -l

where [; is a literal assigned the value true in the satisfying assignment for /. As a
result, none of the default rules that make the atom inc true can be applied. Thus, since
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there are no constraints on ¢, the default rule

1q Ainc
q

can be applied, making g true in the extension. The extension can be completed by
applying the default rules introduced for the literals in I as applicable. This cannot
interfere with the inclusion of g.

(<=). Suppose there exists an extension of (D, W) which contains ¢. Since the only place
that ¢ appears is in the default rule

1¢ A -ine
q

it must be the case that it is consistent to believe —inc. Thus, it must be the case that
none of the default rules of the form

tinc A =G

inc

can be applied, so it must be inconsistent to believe the negation of any of the clause
atoms C;. It follows that for each clause, at least one of the literals in that clause is true,
made so by applying the appropriate default rule for that literal in creating the extension.
- We can easily obtain a satisfying assignment for ] by making exactly these literals true
inl. O

These resuits are summarized in Figure 8.4 below.

8.6 Single Literal Theories

As mentioned above, this is the class that was investigated in {KS89]. The complexity
of reasoning in the theories they considered is described in {KS89}; their results, together
with ours, are illustrated in Figure 8.5 below. Since these theories are contained in both
of those considered above, problems easy for them are also easy for these. The new
result we present for these theories is given below:

Single Literal Prerequisite-Free Ordered Unary

Instance: A finite set W of propositional single literal clauses, together with a finite set
D of prerequisite-free ordered unary propositional defaults, and a distinguished literal q.
Question: Does there exist an extension of (D, W) which contains q ?

Theorem § Single Literal Prerequisite-Free Ordered is NP-complete.
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{ polynomial _J PF Normal Unary

PF Positive Normal Unary

riguie 8.4: The complexity of membership problems with 2-literal theories.

Proof: Once again, demonstrating membership in NP is fairly straightforward. To demon-
strate NP-hardness, we transform an instance [ of 3-SAT to the membership problem for
Single Literal Prerequisite-Free Ordered defaults as follows.

Given an instance / of 3-SAT, let C = {C},(3,...,Cm} be the clauses appearing in
I, and let V be the set of all propositional atoms appearing in any clause C;. Using two
new atoms, ¢ and inc, we add the following default rule to D:

1g A —inc
q

Next, for each clause C, : 1 < ¢+ € m, introduce a new atom c¢; and a default rule:

TIne A g

nc

For each clause C, = {/;,{;,,/;,} (where each l;, is either a propositional atom from V
or its negation) we add the following default rules to D:

o If [, is the negation of a propositional atom e, add the rule

tes A ma

¢
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e If [; is a propositional atom q, add a new atom a;, and the rules

TG A g,

¢

and
- a, A —a

a,-,

Finally, for each atom a that appears either positively or negatively in some clause
in I, add the default rules:

Ta P -a
a e

This completes the transformation. The transformed instance is linearly related to the

original. It is easy to see that (D, W) is Single-Literal Prerequisite-Free Ordered. We

show that it is ordered below.

We now show that there exists an extension of (I, W) which contains ¢ if and only
if the original instance / of 3-SAT is satisfiable.
(=). Suppose I is satisfiable. Then there is some assignment of truth values to the atoms
in [ such that at lest one literal in each clause is assigned the value true. We proceed by
applying the default rule corresponding to each literal which is true in [ (it is easy to see
that one can always do this consistently). Consider the default rules that were introduced
to the transformation for each clause. Each of the original clauses C; has at least one
literal assigned true in the assignment; we consider two cases for each such clause:

1. If there is a negative literal —a occurring in C; which is true in the assignment,
there is a comresponding rule of the form

¢ Aa

G

which can be applied (since we applied the default rule corresponding to -a, and
there are nc constraints on the atoms ¢; which prohibit us from applying this rule).
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2. For any remaining clauses Cj, there is only a positive literal a;, occurring in C;
which is true in the assignment. There are corresponding default rules of the form
TCi A ~a;,
C;
and
. a, A —a -

a;J
both of which can be applied (since we applied the default rule corresponding to
ai,, and there are no constraints on the atoms ¢; which prohibit us from applying
these rules).

This leaves us with a partial extension containing each ¢z : 1 < ¢ < m together with each
of the literals true in the assignment. Since each default rule that allows us to include inc
in an extension relies on the consistency of including the negation of one of the atoms
¢;, no default rule can be applied to include inc. There are no other constraints on inc,
s0 —inc is consistent with the extension we are constructing, as is g. Thus, none of the
default rules that make the atom inc true can be applied. Since there are no constraints
on g, the default rule
1q A —~inc
q

can be applied, making ¢ true. It is now a straightforward matter to check that this resuits
in an extension that contains gq.

(«). Suppose there exists an extension of (D, W) which contains q. Since the only place
that ¢ appears is in the default rule

1 g A -ine
q

it must be the case that it is consistent to believe —inc. Thus, it must be the case that
none of the default rules of the form

rtnc A e
tne
can be applied, so it must be inconsistent to believe the ncgation of any of the literals
for each clause (i.e., each clause atom ¢; : 1 < ¢ < m is in the extension). It follows
that for each clause, at least one of the literals in that clause is true, made so by applying
the appropriate default rule (or rules, if the literal is positive in the clause) for that literal

in creating the extension. We can easily obtain a satisfying assignment for I by making
exactly these literals true in I. O

These results are summarized in Figure 8.5 below.
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Figure 8.5: The complexity of membership problems with single literal theories.

8.7 Conclusions and Future Research

We have presented a number of results which characterize the complexity of the member-
ship problem for restricted default theories. This work significantly extends that presented
in {KS89] and [Sti89]. Our work considers very tight restrictions on the expressiveness
of default rules as well as the underlying propositional theory. Unfortunately, our results
show that even under these restrictions, membership problems almost invariably remain
intractable. This suggests that if practical default reasoning systems are desired, one
must either consider extremely restricted expressiveness or work to identify subcases of
otherwise intractable classes which yield feasible complexity.

Most of the questions regarding extension existence and entailment over the classes
we have considered can be answered as corollaries to the results we have presented. This
is addressed in the full version of this paper ({Stu90]). The reader will note, however,
that we have left two questions unanswered at this time, those being the complexity
of theories consisting of prerequisite-free unary and ordered unary defaults when the
underlying propositional theory consists of single literals. We are currently investigating
these questions.
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9. PRIMO: A Tool for Reasoning with Incomplete
and Uncertain Information

James K. Aragones
Piero P. Bonissone
Jonathan Sdllman

Artificial Intelligence Program
General Electric Company
Corporate Research and Development
P.O. Box 8
Schenecrady, NY 12301

9.1 Introduction and Motivation

PRIMO (Plausible Reasonlng MOdule) is a reasoning system which integrates
the theories of plausible reasoning (based on monotonic rules with degrees of
uncertainty) and defeasible reasoning (based on default values supported by non-
monotonic rules). The PRIMO system consists of a representation language which
includes declarative specifications of uncertainty and default knowledge, reasoning
algorithms, and an application development environment.

In this paper we review the theoretical foundations of PRIMO (see [BCGS90,
BGD87]) and discuss our progress in PRIMO’s implementation.

9.2 Uncertainty

The uncertainty reoresentation used in PRIMO is based on the semantics of many-
valued logics. PRIMO, like its predecessor RUM [BGD87], uses a combination
of fuzzy logic and interval logic to represent and reason about uncertainty. This
approach has been successfully demonstrated in two DARPA applications, the
Pilot’s Associate and Submarine Operational Automation System programs.
PRIMO handles uncertain information by qualifying each possible value as-
signment (0 any given propositional variable with an uncertainty interval. The
interval’s lower bound represents the minimal degree of confirmation for the value
assignment. The upper bound represents the degree to which the evidence failed
to refute the value assignment. The interval’s width represents the amount of igno-
rance attached to the value assignment. The uncertainty intervals are propagated
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and aggregated by Triangular-norm-based uncertainty calculi (see [Bon87, SS63)).
The uncertainty interval constrains intervals of subsequent, dependent values.

9.3 Incompleteness

PRIMO handles incomplete information by evaluating non-monotonic justified
(NMJ) rules. These rules are used to express the knowledge engineer’s prefer-
ence in cases of total or partial ignorance regarding the value assignment of a
given propositional variable. The NMJ rules are used when there is no plausible
evidence (to a given numerical threshold of belief or certainty) to infer that a
given value assignment is either true or false. The conclusions of NMJ rules
can be retracted by the belief revision system, when enough plausible evidence is
available.

PRIMO uses the numerical certainty values generated by plausible reason-
ing techniques to quantitatively distinguish the admissible extensions generated
by defeasible reasoning techniques. The method selects a maximally consistent
extension (see [BCGS90]) given all currently available information.

For efficiency considerations some restrictions are placed on the language in
which one can express PRIMO rules. The monotonic rules are non-cyclic Horn
clauses, and are maintained by a linear belief revision algorithm operating on a
rule graph. The NMJ rules can have cycles, but cannot have disjunctions in their
conclusions.

By identifying sets of NMJ rules as strongly connected components (SCC’s),
we can decompose the rule graph into a directed acyclic graph (DAG) of nodes,
some of which are SCCs with several input edges and output edges. PRIMO
contains algorithms to efficiently propagate uncertain and incomplete information
through these structures at run time. Treating the SCCs independently can re-
sult in a significant performance improvement over processing the entire graph.
However, this heuristic may result in loss of correctness in the worst case. These
algorithms require finding satisfying assignments for nodes in each SCC, and are
thus NP-hard in the unrestricted case. We can achieve tractability by restricting the
size and complexity of the SCC’s, precomputing their structural information, and
using run-time evaluated certa‘nty measures to select the most likely extension.

9.4 Implementation

PRIMO has been developed using the NewFlavors object oriented programming
language. Most internal PRIMO data types have been represented as NewFlavors
objects, e.g., knowledge bases (KBs), rules, and uncertainty intervals. Most of
the procedural algorithms have been pushed into the objects, making the system
much simpler to develop.
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9.4.1 Layers of Abstraction

Internally, PRIMO has three levels of abstraction (see Figure 9.1 below. The first
layer, the knowledge base layer, corresponds to the first order predicate calculus.
This is the level at which the knowledge engineer writes meta-rules (rules that may
contain variables and are assumed to be universally quantified) and the overall
design of the KB may be viewed through the rule-class hierarchy.

First order .
prodicate calculus Prop:;l:ond Computmtonal
fayer layer

Figure 9.1: PRIMO’s three levels of abstraction.

The next layer, the instantiated world layer, is propositional. At this level of
abstraction, the meta-rules have been selectively instantiated with ground items.
At this point it is possible to maintain values augmented with uncertainty inter-
vals efficiently. In practice, this layer is used for organizational and debugging
purposes.

The computational layer is where uncertainty intervals are propagated, user de-
fined predicates are evaluated and SCCs are solved. This layer emphasizes speed
of computation at the expense of modifiability, and is used in fielded applications.

9.4.2 Extensible Design

There is an interesting side benefit of using an object oriented strategy for PRIMO;
there are only a small number of operations that are performed differently by each
node type. Not only does this allow us to eliminate much duplication of code,
but 1t aliows us to make quick global changes to the internal operation of the
reasoning algorithms, which are distributed throughout the objects. Thus all that
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is necessary to forward or backward chain is to write a graph traversal function
that generates nodes in the correct order.

9.4.3 Efficiency

Many techniques have been used to improve the performance of PRIMO, espe-
cially when operating on monotonic rules. The two methods are used to effectively
prune the rule graph before chaining occurs. The most commonly used method
is the rule context, a pre-condition that is tested beiore a rule is fired to ensure
rule applicability in the current environment. The second limits rule chaining
operations to a specified set of rule-classes, ignoring other rules.

Other techniques have been used to improve the efficiency of the propagation
of values through the rule graph. For example, it is possible that two distinct
rules may share a portion of their premise clauses. During rule compilation in
PRIMO, these portions are recognized as being identical, so the value is only
computed once and is shared by both rules. Also, caches are used throughout the
intermediate computations for uncertainty intervals. When an interval changes for
an input value, all dependent nodes in the graph are signaled that their values are
outdated, but it is only when an up-to-date value is required that the rules re-fire.

In a developer’s version of PRIMO, there is a large amount of processor and
memory overhead required for graphical development tools (described in section
5.2) which would not usually be present in a deployed system. Much of the time
spent in the current version of PRIMO is used in creating and destroying objects
that are only needed for display. Fuzzy numbers, for instance, are objects which
are discarded and garbage collected almost immediately, but they are currently
kept as persistent objects for display purposes. By intelligent allocation and deal-
location of objects and eliminating objects simply retained for display purposes,
we are able to speed computation considerably.

9.5 Knowledge Engineering

9.5.1 Knowledge Base Development

Using plausible reasoning, KBs can be designed using iterative refinement. Knowl-
edge engineering begins by writing a set of simple rules. Later, refinements are
made by adding new rules to further constrain the original beliefs. The program’s
flow of control is usually unimportant to the knowledge engineer; the important
features of the KB are the relations between values and the way uncertainty is
aggregated.

Rule-class hierarchies are used to organize KB development. In methodology
similar to top-down programming, rule-class modules are developed separately.
The modules are tested in sets by limiting rule firing to each set. Larger sets are
tested similarly until the entire KB is verified.
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9.5.2 Development Tools

PRIMO’s development environment consists of several graphical displays. One
can view uncertainty measures, rule graphs, and hierarchical organization. Many
options are available for each of these formats to limit the amount of information
displayed at any one time.
In most cases, uncertainty intervals are displayed as sliding bars, the left hand
~side representing the level of support and the right hand side representing the
level of refutation; the width of the bar represents the current level of ignorance
(see Figure 9.2).

lgnorance

| I

|o

< -

Support Refutation
(positive evidence) (negative evidence)

Figure 9.2: A typical uncertainty interval.

PRIMO can also draw complete rule graph layouts to view rule interactions,
rule-value interactions and value interactions. It may be important to inspect the
contributing factors for a value or the contributions made by a rule. This can
be viewed by selecting a node to serve as the root for graphical display (see
Figure 9.3).
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Figure 9.3: A PRIMO rule graph.

Rule-class hierarchies can also be displayed. It is possible to show part of a
rule-class hierarchy or show all the rules within a ruleclass (see Figure 9.4).

9.6 Conclusions

We have described the theory and an implementation of PRIMO, an approach to
integrating plausible and defeasible reasoning. Our current challenge is to test
these ideas in a number of applications where uncertainty and incompleteness

abound.
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10. PRIMO: User’s Guide

Artificial Intelligence Program
General Electric Corporate Research and Development
Schenectady, New York 12301

10.1 Introduction

This chapter serves as an introduction and user’s guide for PRIMO. PRIMO (Plausible
Reasonlng MOdule) is a reasoning system which integrates the theories of plausible rea-
soning {based on u:onotonic rules with degrees of uncertainty) and defeasible reasoning
(based on default values supported by nonmonotonic rules). The PRIMO system con-
sists of a representation language (including declarative specifications of uncertainty and
default knowledge), reasoning algorithms, and application development tools.

PRIMO is the successor to the Reasoning with Uncertainty Module (RUM), a GE propri-
etary tool which encapsulated some of the early theory developed before PRIMO. PRIMQO
itself has been developed using Common Lisp and Symbolics Genera 7.2 Flavors on the
Symbolics Lisp Machine.

A complete description of the functions, variables, and macros described in this guide can
be found in the PRIMO Reference Manual. By convention, actual code (including refer-
ences to PRIMO system functions and variables) appears in this typeface: (value
buffer). Newly-introduced terms and names that stand for other pieces of code
(metavariables) appear in italics. The names of function keys and other input that you
supply to PRIMO appear in this typeface: Function-Help.

168




10.2 Basic concepts

PRIMO provides facilities for reasoning with uncertain and incomplete reasoning. The
uncertainty representation used in PRIMO is based on the semantics of many-valued
logics—PRIMO, like its predecessor RUM, uses a combination of fuzzy logic and in-
terval logic to represent and reason about uncertainty. This approach has been success-
fully demonstrated in two DARPA applications, the Pilot’'s Associate program and the
Submarine Operational Automation System program. PRIMO deals with incomplete in-
formation by supporting non-monotonic justified (NMJ) rules, which are used to express .
the knowledge engineer’s preference in cases of total or partial ignorance regarding the
value assignment of a given propositional variable.

This section describes the basic concepts behind PRIMQO's representation structure, un-
certainty propagation algorithms, and inferencing mechanisms.

10.2.1 Reasoning with inference rules

PRIMO represents knowledge about objects and relationships between objects in the form
of inference rules, which capture the deduction of new facts, or conclusions, from sets
of given facts, or premises. A PRIMO rule is a deductive statement of the form

Given context,
if premises
then conclude consequences.

The context clause identifies one or more preconditions which must be met before the
rule can be applied to the current data. This provides an efficient screening mechanism
for the inferencing process, focusing it on a small subset of the entire knowledge base.
For instance, one set of rules might be used for determining the intent of friendly agents,
and another set used for unknown or hostile agents.

The premise clauses are logical expressions, expressed as predicates on attribute values
of objects in the current world model. If all of these clauses are satisfied, then the
consequences are acuvated. These represent the assignment of values to other object
attnbutes in the world model. Given other rules which then test these consequence
attributes in their premises, PRIMO’s reasoning processes can construct a series of logical
inference chains which support the inferred conclusions.

10.2.2 Representing uncertainty

The basic unit of uncertairty in PRIMO is the fuzzy number. In contrast to normal logic,
where the truth of a propositional value is either “0” or 17, a fuzzy number can be
used to represent truth values across the full range of a particular truth space (which in
PRIMO is defined from O through 1000) by defining a distribution over the interval. The
degree of “truth” associated with the fuzzy number is indicated by the location of the
distnbutior function on the truth interval; the uncertainty associated with this measure is
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Figure 10.1: Fuzzy Nwnbers

indicated by the distribution’s width. Figure 10.1 show some typical fuzzy distributions,
and their associated interpretations.

For efficiency reasons, the distribution function of a fuzzy number is parametrically
characterized by a 4-tuple (a, b, @, 5). The first two parameters indicate the interval in
which the membership value is 1.0; the third and fourth parameters indicate the left and
right width of the distribution, with the membership function varying linearly down to
zero between a and a — o, and between b and b+ 3. Thus, absolute truth is represented by
(1000, 1000, 0, 0), absolute falsehood by (0, 0, 0, 0), total ignorance by (0, 1000,0,0), and
a crisp point z by (z,z,0,0). Figurc 10.2 shows the same fuzzy distributions previously
show in Figure 10.1, but includes their characteristic parameters.

/] | A
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Figure 10.2: Parameterized Fuzzy Numbers

Since it’s difficult to obtain precise and consistent numerical certainty values using this
notation alone, in PRIMO you can use a number of fuzzy constants called linguistic terms.
For instance, the constant *maybe* represents the fuzzy number (400,600, 100, 100).
The constant *unlikely* stands for the fuzzy number (10,250,10Q,10). Linguistic
terms are grouped into a number of term sets, which determine the granularity of the
measurc of certainty that your knowledge base can suppornt. Thus, with the L7 term set,
you could use the following seven terms:

Linguistic Term Fuzzy Value
*impossible* ©, 0,0, 0
*not-likely* (50, 150, 30, 30)
*small-chance* (220, 360, 50, 60)
*it-may* (410, 580, 90, 70)
*meaningful-chance* (630, 800, 50, 60)
*nearly-certain* (830, 960, 70, 30)
*certain* (1000, 1000, 0, 0)

Four other term sets provide greater and lesser degrees of granularity as needed.

In PRIMO, each value assignment to a variable is qualified with two fuzzy numbers,
indicating an uncentainty interval. The lower fuzzy number represents the minimal degree
of confirmation for the value assignment, i.e. how much positive evidence there is. The
upper fuzzy number represents the degree to which the evidence failed to refute the
value assignment, i.e. how little negative evidence there is. Like the fuzzy numbers
themselves, the distance between the bounds of an interval represents the amount of
ignorance attached to the value assignment, and the positions of the lower and upper
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bounds indicate the minimum and maximum degree of certainty, respectively, that the
value assignment is true. Note that an interval with a lower bound greater than the upper
bound indicates conflict, with the interpreiation ihat there is both pusiuive and negative
evidence with greater than 0.5 certainty.

You may be confused by the difference between fuzzy numbers and the intervals which
they define. Both define an interval along the truth spectrum, both are characterized
by a degree of certainty associated with the position of the interval on the spectrum,
and both have an additional degree of ignorance associated with the interval’s width. It
might help to think of the interval as sort of a “superfuzzy”, whose lower and upper
bounds themselves have a degree of fuzziness. Since the widtrs of both fuzzy numbers
are subsumed within the interval, PRIMO is really only using the fuzzy numbers for
their position along the truth spectrum. As we’ll explain in the next section, however,
by explicitly maintaining the lower and upper bounds as fuzzy numbers, we can use a
number of useful methods (o combine and propagate certainty intervals.

10.2.3 Combining uncertainty measures

Uncertainty intervals are combined and propagated by functions based on special cate-
gories of fuzzy operators callcd Triangular nomns, or T-norms. These conjunction and
disjunction functions are used to evaluate the satisfaction of rule premises, to propagate
uncertainty through rule chaining, and to consolidate the same conclusion derived from
different rules.

A T-norm function T(z, y) aggregates the degree of certainty of two clauses in the same
premise. T-norms perform an intersection operation, and at the boundary conditions
of 0 and 1 they are equivalent to the logical “AND” operator. A T-conorm function
S(z,y) aggregates the degree of certainty of the (same) conclusions derived from two
rules. These functions perform a union operation, and at the boundary conditions they are
equivalent to the logical “OR” operator. Finally, a negation function N(z), corresponding
to the logical “NOT” operator, is used to group different T-norm and T-conorm functions
into pairs, based on DeMorgan’s Law, i.c.

S(a,b) = N(T(N(a), N(b)))
and vice versa.

Using N(z) = 1 - z as the negation operator, PRIMO provides the following five uncer-
tainty calculi:

Ti(z.y)=max(0,z+y~1) Su(z,y) =min(l,z + y)
Ti(z,y) = max(0,(yz+ /5 — DB Siz,p) =1 -max(0,(VT—z+/T-y-1?)
Tz, y) = zy Sz, )=z +y—-zy
Ty(z.y) = max(0, I—:%_—l) Sp(z,y) =1 - max(0, —r——’-,—l)
z v—‘ 1—:‘1_-;-
T3(z.y) = min(z.y) Si(z.y) = max(z,y)

(sece Appendix 10.13 for a discussion on the theoretical basis behind these calculi).
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For each calculus, three operations are defined in PRIMO: premise evaluation, conclusion
detachment, and source consensus. The premise evaluation operation determines the
degree to which all the clauses in the rule premise have been satisfied by the input vanable
values, aggregating the certainty inteivals from each clause. If b; and B; indicate the
lower and upper bounds of the certainty of clauses ¢ in the premise of a given rule, for
m clauses, then the combined premise certainty interval [b, B] is

[b)B] = [T(blstP-' ,bm)aT(Bla-Bzy"' ’ Bm)]
where the T-Nom function T € {T1,T,, 12, T;, T3 }.

The conclusion detachment operation indicates the certainty with which the conclusion
of a rule can be asserted, given the rule’s strength and the aggregated uncertainty of
its premise. If s and n are the degree of sufficiency and necessity, respectively, of the
rule, and [b, B] is the computed premise certainty interval, as described above, then the
certainty interval [¢, C] of rule’s conclusion is

[¢,C) = D(s,n,[b, B]) = [T(s,0), N(T(n, N(B)))]

where the detachment function D € {Di, D,, D2, Dy, D3} is defined using the related
T-norm function and N(z) = 1 — z. The sufficiency and necessity indicate the amount
of certainty with which the rule premise implies its conclusion and vice versa. The
sufficiency is used with modus ponens to provide a lower bound of the conclusion. The
necessity is used with modus tollens to obtain a lower bound for the complement of the
conclusion (which can be transformed into an upper bound for the conclusion itself).

Finally, the source consensus operation reflects the fusion of the certainty intervals of the
same evidence provided by different sources. If the evidence is an observed fact, fusion
occurs before the evidence is used as an input in the deduction process. If the evidence
was inferred using two or more rule instances, fusion occurs after the evidence has been
aggregated by each group of deductive paths. One type of source consensus operator is
the intersect function, defined as

[d, D] = [max(c1, &2,...,¢qa),min(Cy, C3,...,Cp)]

where ¢; and C; indicate the lower and upper bounds of the certainty of source j, for n
different _ources contributing a particular value for a variable, and [d, D] is the resulting
fused certainty of that variable. Note that if there is inconsistency among some of the
sources, the resulting certainty intervals wili be disjoint, thus introducing a conflict in the
aggregated result. The dempster-shafer fusion operator eliminates this by normalizing
the intervals before aggregating them.

Thus, there are three different places where you need to specify which calculus to use:

1. For each premise and context clause, if there is more than one predicate you must
specify the T-norm with which the predicate results are combined.

2. Fcr each rule, you must specify the detachment operator with which the conclusion
detachment will be computed (using the rule’s sufficiency, necessity, and premise
certainty).
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3. Finally, for each rule, you must indicate the consensus operator with which the
conclusion aggregation will be computed. This assignment is either intersect or
dempster-shafer.

In assigning premise evaluation and detachment operators, the functions you select will
be based on your attitude toward risk for each rule. The ordering of the T-norms spans
the range from a conservative attitude (71) to a non-conservative one (73). From the
definition of the calculi operations, 771 will generate the smallest premise evaluation and
the weakest conclusion detachment (i.e., the widest uncertainty interval attached to the
rule’s conclusion). Higher F-norms will exhibit less drastic behaviors and will produce
nested intervals with their detachment operations. 73 will generate the largest premise
evaluation and the strongest conclusion detachment (the smallest certainty interval).

10.2.4 Handling incompleteness

PRIMO handles incomplete information by evaluating non-monotonic justified (NMJ)
rules. These rules are used to express the knowledge engineer’s preference in cases of
total or partial ignorance regarding the value assignment of a given propositional variable.
The NMJ rules are used when there is no plausible evidence (with a given numerical
threshold of belief or certainty) to infer that a given value assignment is either true or
false. The conclusions of NMJ rulzs may be retracted by the belief revision system when
enough plausible evidence becomes available.

PRIMO uses the numerical certainty values generated by plausible reasoning iechniques
to quantitatively distinguish the admissible extensions generated by defeasible reasoning
techniques. The method selects a maximally consistent extension given all currently
available information.

For efficiency considerations, some restrictions are placed on PRIMO rules. The mono-
tonic rules are non-cyclic Hom clauses, and are maintained by a linear belief revision
algorithm operasng on a rule graph. The NMJ rules can have cycles, but cannot have
disjunctions in their conclusions.

By identifying sets of NMJ rules as strongly connected components (SCC’s), PRIMO
decomposes the rule graph into a directed acyclic graph (DAG) of nodes, some of which
are SCCs with several input edges and output edges. PRIMO contains algorithms to
efficiently propagate uncertain and incomplete information through these structures at
run time. Treating the SCCs independendy can result in a significant performance im-
provement over processing the entire graph, although this heuristic may result in loss
of correctness in the worst case. The propagation algorithms require finding satisfy-
ing assignments for nodes in each SCC, and are thus NP-hard in the unrestricted case.
PRIMO attempts to maximize tractability by restricting the size and complexity of the
SCC'’s, precomputing their structural information, and using run-time evaluated certainty
measures to select the most likely extension.
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10.3 Implementation

PRIMO was developed using the Flavors object-oriented programming language on the
Symbolics Lisp Machine (Genera 7.2). Most intemal PRIMO data types are represented
as Flavors objects, for example, knowledge bases (KBs), rules, and uncertainty intervals.

This section presents a brief overview of those parts of the PRIMO implementation which
you should be familiar with.

10.3.1 Abstraction layers

PRIMO has three levels of abstraction. The first layer, the knowledge base layer, corre-
sponds to the first order predicate calculus. This is the level at which you write meta-rules
(rules that may contain variables and are assumed to te universally quantified). These
rules can be organized and grouped into hierarchical ruleclasses.

The next layer, the instantiated world layer, is propositional. At this level, the meta-
rules have been selectively replaced with ground items representing instantiated rules,
predicates, and object instance variables within a partcular world.

The instantiated nodes are further expanded in the compuzational layer, where uncertainty
intervals are propagated, user defined predicates are evaluated, and strongly-connected
components are resolved. Each node in this layer represents and implements a compu-
tational step in the inferencing process, allowing values to be computed and propagated
very efficiently.

10.3.2 Design extensions

Since PRIMO was developed using object-oriented design techniques, there are only a
small number of operations that need to be performed differently by each node type. This
allows us to reduce duplicated code, and to make quick global changes to the internal
operation of the reasoning algorithms, which are distributed throughout the objects. For
instance, each object type in PRIMO supports a free method, which performs the
appropriate resource deallocation and cleanup when an object instance is deleted. As
another example, all that is required to implement a new rule chaining strategy is to
write a graph traversal function that generates nodes in the correct order, calling an
existing compute method for each node.

10.3.3 Efficient inferencing mechanisms

Several techniques have been used to improve the performance of PRIMO, especially
when operating on monotonic rules. Two methods are used to effectively prune the rule
graph before chaining occurs. The most commonly used method is the rule context, a
pre-condition that is tested before a rule is fired to ensure rule applicability in the current
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environment. The second limits rule chaining operations to a specified set of ruleclasses,
ignoring other rules.

Other techniques have been used to efficiently propagate values through the rule graph.
For example, two distinct rules may share a portion of their premise clauses. During
rule compilation in PRIMO, these portions are recognized as identical, so the value is
only computed once and is shared by both rules. Also, caches are used throughout the
intermediate computations for uncertainty intervals. When an interval changes for an
input value, all dependent nodes in the graph are signaled that their values are outdated,
but it is only when an up-to-date value is required that the rules re-fire.

In the developer’s version of PRIMO, there is a large amount of processor and memory
overhead required for graphical development tools which would not usually be present
in a deployed system. Much of the computation time is used in creating and destroying
objects that are only needed for display. Fuzzy numbers, for instance, are objects which
are discarded and garbage collected almost immediately, but they are currently kept as
persistent objects for display purposes. By intelligent allocation and deallocation of
objects and eliminating objects used for display purposes, we can speed up computation
considerably in a deployment system.
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10.4 Using Flavors

Flavors is an extension to Symbolics Common Lisp that supports object-oriented pro-
gramming. It is a powerful and flexible tool for programming in a modular style. The
basic concepts of Flavors are simple to understand and easy to use. On the other hand,
Flavors is a complex system that offers many advanced opticns and programming prac-
tices.

This section is included to provide a bref overview of the basic concepts of Flavors
(for more information, refer to the section titled “Flavors” in the Symbolics Common
Lisp—Language Concepts manual). Subsequent sections will discuss the specific use of
Flavors in your PRIMO application.

10.4.1 Basic Flavors concepts

Most PRIMO applications are organized around objects, which model both real-world
things, such as aircraft and submarines, and conceptual entites, such as doctrines and
reports. Each object has some state, or set of persistent attributes, and a number of
cperations that can be performed on it. Thus, an object-oriented program consists of a
set of objects and a set of operations on those objects.

The Flavors facility enables you to define a new type of data structure that is similar
to a KEE’'s unit or frame. The newly-defined data structure is a convenient, concise,
and high-level way to represent an object. Using Flavors terminology, an object-oriented
PRIMO application is built around:

Flavors Each distinct kind of object is represented by a flavor, which acts as
a template for all objects of that kind. The flavor object defines the
inherent structure of its objects.

Flavor instances  Each object is implemented as an instance of a particular flavor. The
term object is used interchangeably with instance.

Instance variables Each flavor specifies a set of state variables for objects of that fla-
vor. These are called instance variables. PRIMO extends Flavors
by associating certainty intervals with instance variable values, and
by providing mechanisms to update these values and their certainty
intervals based on rule inferences.

Generic functions The operations that are performed on objects are known as generic
Sunctions. Unlike ordinary functions, genenic functions may behave a
certain way for objects of one flavor, and behave in another way for
objects of another flavor.

Methods The code that performs a generic function on instances of a cenain
flavor is called a method. Typically, one generic function has several
methods defined for it. and Flavors chooses which one to use by the
flavor of the first argument.
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Often a flavor is defined by combining several other flavors, called its components. The
new flavor inherits instance variables and methods from its components, including those
which they in tumn inherited from their components. Thus, if two types of objects have
structure or behavior in common, they can inherit it from the same flavor, reducing
duplicated code and increasing extensibility and modularity.

10.4.2 Representing objects

Assume your PRIMO application is dealing with aircraft. You must first determine a
way to represent aircraft. If the important things to know about an aircraft are its name,
class, type, you can represent aircraft as follows:

(defflavor aircraft
(name class type)

() ;no component flavors
:readable-instance-variables
:writable-instance-variables
:initable-~instance-variables)

The defflavor form defines a flavor that represents aircraft. The name of the flavor
is aircraft. The instarice variables are name, class, and type. The definition
contains three options, which have the following effects:

:readable~instance-variables
Defines accessor functions that enable you to query the object for the value
of instance variables. In this case three functions are automatically generated:
aircraft-name, aircraft~class, and aircraft-type.

:writable-instance-variables
Enables you to alter the value of instance variables using setf and the ac-
cessor functions. Note that this option subsumes :readable~instance-
variables, since writable instance vanables are automatically made readable
as well.

:initable-instance-variables
Enables you to initialize the value of an instance variable when you make a
new instance, using the name of the variable as a keyword.

Once you've defined this flavor, each real-world aircraft in your system can be represented
as an instance of aircraft. To create new instances, you use the make-instance
function, as follows:

(setf aircraft-1 (make-instance ’aircraft
:name "My Aircraft"
:class ‘fighter
:type "mig~31))
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10.4.3 Operating on objects

You can query aircraft-1 for the value of its instance variables by using the accessor
functions that were automatically generated as a result of the : readable-instance-
variables option to defflavor. For example:

(aircraft-name aircraft-1l)
==> "My Aircraft"

You can also change the value of an instance-variable, using set f and the appropriate
accessor function:

(setf (aircraft-type aircraft~l) ‘mig-29)
==> MIG-29

Finally, you can examine the instance by using describe:

(describe aircraft-1)
==> #<AIRCRAFT 54157652>, an object of flavor AIRCRAFT,
has instance variable values:

NAME "My Aircraft"”
CLASS FIGHTER
TYPE MIG-29
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OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas ¢f expertise. Technical and engineering support wiihin
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of CBI systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Alr Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal preces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.




